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Abstract – We study a bifurcation cascade whose proper unfolding requires tuning more than one
parameter simultaneously. Specifically, we investigate metric properties of extended self-similar
triangular areas observed recently in the control parameter space of flows (lasers and electronic
circuits), and maps. Such areas are delimited by shrimplike stability islands, seem to arise in
unbounded quantities, and to accumulate in narrow intervals of control parameters. Numerically,
we find their asymptotic rate of accumulation to be unity. The asymptotic properties of triangle
vertices and their centroids are also investigated.

Copyright c© EPLA, 2019

Introduction. – Recently, a profusion of zig-zag net-
works interconnecting certain classes of periodic oscilla-
tions were discovered in the control parameter space of a
fiber-ring laser, in an electronic circuit containing a tunnel
diode [1,2], and in the Hénon map, a proxy for a widely
used class of CO2 lasers [3,4]. Zig-zag networks consist
of regular chains interconnecting sequences of intricate
and self-similar stability phases known as shrimps [5–10],
formed by pairs of cascades of either period or peak dou-
bling bifurcations followed by chaotic oscillations. Such
networks are not difficult to find in both continuous-time
and discrete-time dynamical systems.

One of the distinctive characteristics of zig-zag networks
is that they sometimes display infinite accumulation of
shrimp triplets which form triangles, as illustrated below.
Thus, they offer a natural scenario to investigate met-
ric properties of the accumulation of bifurcation cascade
whose proper unfolding requires tuning simultaneously
more than one parameter. In particular, zig-zag networks
allow the investigation of scaling properties of extended
areas discovered recently in the control parameter space
of prototypical systems, namely in the self-pulsations of
a CO2 laser with feedback [10,11], in a damped-driven
Duffing oscillator [12], and in the characterization of the
transport properties of ratchets [13–15]. Accordingly, the
present work grew out of a desire to study scaling proper-
ties of stability islands whose generic shape and position in

control parameter space depend on tuning more than one
control parameter simultaneously, Multiparameter scal-
ings do not seem to have been explored yet.

As is known, the investigation of metric properties of
bifurcation cascades was the subject of several studies
probing universality classes in dynamical systems. Such
studies were motivated originally by remarkable find-
ings reported independently by Feigenbaum [16] and by
Coullet and Tresser [17,18]. For more recent results see,
e.g., refs. [19,20]. Despite the initial claims of universal-
ity of the scaling constants, it was concomitantly reported
by several groups that the scaling constants, in fact, vary
considerably in systems more complex than the quadratic
map, and in higher dimensions [21–31].

Concerning metric properties, period-doubling bifurca-
tions in low-dimensional systems have been studied ex-
tensively. However, such investigations were restricted
exclusively to properties observed when varying a single
control parameter. As is known, the most pronounced ef-
fects of bifurcation cascades occur along certain specific
directions, tortuous corridors in parameter space, which
invariably require tuning more than one parameter in or-
der to be able to move along them [5,10]. Here, we focus on
metric properties observed when complex extended struc-
tures in parameter space are deformed by the simultane-
ous variation of two control parameters. Clearly, the need
for tuning more than one parameter simultaneously arises
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Fig. 1: The region of the control parameter space of the Hénon
map which contains a large concentration of shrimplike sta-
bility structures [5–8]. The two colors used to display the in-
ner structure of the stability regions correspond to positive or
negative values for the trace of the Jacobian matrix at every
point. See sect. “Shrimp doublets and triplets”. The arrow-
head points to the window magnified in fig. 2(a). This figure
displays 1200× 1200 parameter points.

because the boundaries separating different phases in con-
trol parameter space are normally complicated curves, not
straight lines.

We report an investigation of the scaling properties of
certain triangular areas delimited by shrimp triplets in
the control parameter space of the two-dimensional Hénon
map,

xt+1 = a− x2
t + byt, yt+1 = xt. (1)

Here, a, b are real parameters and x, y are real variables
whose meaning depends on the particular system being
modeled by the map. Figure 1 shows the distribution of
stability islands for the map, with periodic phases repre-
sented in colors, following refs. [5,10]. The triangular ar-
eas discussed here were also observed in other maps used,
e.g., to model discrete ratchets, where zig-zag sequences
are associated with the characterization of the ratchet cur-
rent [13–15].

At present there does not exist a satisfactory and practi-
cal theory to study the accumulation of extended stability
islands, that is, an analytical approach to estimate con-
vergence of self-similar extended structures and to delimit
boundaries of stability phases in higher-dimensional dy-
namical systems. Accordingly, such investigations must
be performed numerically. For practical applications, the
identification of complex structures and their accumula-
tion mechanisms in maps can be made with a moderate
investment of computer time. A significant advantage of

studying metric properties of maps is the possibility to by-
pass all the usual uncertainties associated with numerical
algorithms used for the integration of sets of differential
equations.

Shrimp doublets and triplets. – Figure 1 shows a
broad view of the control parameter space of the Hénon
map, the region where one finds most of the shrimplike is-
lands of stability [5–8]. Numbers indicate the main period
k of some of the k × 2n islands.

Rather than using eigenvalues [32], in fig. 1 we follow
Sannami [33] in plotting the trace τk of the Jacobian ma-
trix for k-periodic points. The reason for using the trace
is that eigenvalues are not always real numbers and have
manifolds that may display odd behaviors [34]. There-
fore, eigenvalues do not seem reliable to inspect the in-
ner structure of shrimps. Instead of using a single solid
color to paint the whole k-periodic phase, we partitioned
phases into two colored sectors as follows. For a given pe-
riod k, we represented the region characterized by τk > 0
using a color associated with the period, using black to
represent the region where τk < 0. This dichotomic divi-
sion of the stability windows, the same used in all figures
below, increases the information content of stability dia-
grams, allowing one to easily recognize shrimps sharing
similar periodicities and, simultaneously, revealing their
inner structure, analogously to plots of “multipliers” for
one-dimensional maps [35].

In fig. 1, the white region represents parameters leading
to aperiodic (i.e., chaotic) orbits. Starting from the left
side, fig. 1 shows two pairs of stripes containing periods 2
and 4, as indicated. They belong to the familiar 1 × 2n

bifurcation cascade. After the rightmost period-4 region,
it is possible to recognize a similar pair of parabolic stripes
corresponding to period 8, also characterized by negative
and positive values of τ . In the upper part of the period-8
cascade, there is a black box containing a large portion of
an additional complicated period-8 structure, which ex-
tends well into the vast parameter region characterized by
divergence, as indicated. This additional period-8 island
contains a cusp located somewhat near structures of peri-
ods 10 and 6. Incidentally, around these islands one finds
a startling phenomenon: stable periodic orbits character-
ized by complex values of (x, y) but for real parameters
(a, b) [36].

Figure 1 also contains two boxes with shrimp doublets
and triplets. As mentioned, the large and easily visible
box contains part of the period-8 structure. A second and
much smaller box, indicated by an arrowhead, is located
between shrimps of periods 7 and 9. It is shown magnified
in fig. 2(a). At the center of this figure there is a wide
period-18 stability island mentioned by Lorenz [7]. As
is clear from the figure, the trace τ reveals a relatively
complicated inner topography of the central portion of this
island. On a finer scale, around the period-18 island there
is a profusion of shrimp doublets, some of which are shown
in fig. 2(b). Sometimes, such doublets are in fact triplets,
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Fig. 2: Sequences of shrimp doublets and triplets. Numbers indicate the period of the main stability region. The white
background represents parameters leading to chaotic oscillations. The pink background is the basin of the attractor at −∞.
(a) The complex period-18 structure studied by Lorenz [7], surrounded by shrimp doublets and triplets. Boxes are magnified
in the next three panels. (b) A sequence of shrimp doublets. (c) An apparently isolated pair of period-25 shrimps which,
however, forms (d) a shrimp triplet; (e) a period-23 triplet between a pair of period-29 triplets; (f) a region with a profusion
of triplets and more intricate stability islands. The two boxes are magnified in fig. 6. Individual panels display the analysis of
1200× 1200 = 1.44× 106 parameter points.
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Fig. 3: Successive magnifications illustrating a profusion of zig-zag triplets. (a) Magnification of the uppermost box in fig. 1.
(b) Enlargement of the red box in (a). (c) Enlargement of the black box in (a). (d) Apparently an unbounded arithmetic
progression of zig-zag triplets is located in the box, shown magnified in fig. 5. Similar sequences exist in other regions of the
control parameter space. Grid resolution: 1200× 1200 parameter points.
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which may also arise as combinations of unsuspected and
apparently uncorrelated structures, as shown in fig. 2(c)
and fig. 2(d).

As hinted by the periodicities of individual doublets in
fig. 2(b), they do not seem to be connected in any no-
ticeable way. Uncorrelated doublets exist also in several
other locations in the control parameter plane. Analo-
gously, there is a large number of triplets, like in fig. 2(d),
which do not seem to be connected to other stability is-
lands. Attempts to detect shrimp connections met diffi-
culties because their legs get thinner and thinner as one
moves away from their central stability region. Similarly
to fig. 2(d), fig. 2(e) illustrates a period-23 triplet forma-
tion in the same parameter region where there are two
period-29 triplets. Such mixed formations are also found
in other windows in the b > 0 half of the control plane.
Figure 2(f) shows a sort of “border line” triplet strad-
dling the chaotic and the divergent backgrounds, namely
a triplet having two shrimps located over a background of
chaos linked to a shrimp located over the background of
divergence. Near this triplet, one finds a plethora of addi-
tional triplets as well as more complicated arrangements,
illustrated by the pair of boxes in fig. 2(f), shown magni-
fied below in fig. 6. In contrast to the isolated doublets
and triplets in fig. 2, it is also possible to find unbounded
cascades of self-similar triplets forming arithmetic progres-
sions, namely whose periodicity increases by a constant
value from triplet to triplet, as illustrated in fig. 5 and
discussed in the next section.

Triplets in arithmetic progression. – Figure 3
shows a sequence of successively magnified windows
indicating the location of an interesting arithmetic pro-
gression of shrimp triplets that we wish to consider in more
detail. The pair of boxes fig. 3(a) contains several triplets
analogous to the ones observed in systems governed by
differential equations, namely in fiber-ring lasers, and in
an electronic circuit with a tunnel diode [1,2]. Figure 3(b)
shows uncorrelated triplets similar to the ones in fig. 2(d),
while the red boxes in figs. 3(c) and (d) mark the location
of triplets in an apparently never-ending arithmetic pro-
gression. Similar unbounded progressions exist in other
parameter windows, particularly for orbits of higher pe-
riods. Such apparently unbounded progressions of sta-
bility islands display accumulation boundaries, horizons,
embedded in the broad parameter background associated
with chaotic oscillations.

The study of metric properties of the two-dimensional
Hénon map and higher-dimensional maps is more compli-
cated than the corresponding study for one-dimensional
systems. For one-dimensional maps xi+1 = f(xi),
the study of metric properties is greatly facilitated by
the presence of critical points, namely points where
df(x)/dx|x=xi

= 0. Orbits containing such points are
the so-called superstable orbits. For such orbits, the mul-
tiplier mk ≡ dfk/dx associated with a k-periodic orbit is
zero [37–39] (fk denotes the k-th composition of f with
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Fig. 4: Details of the arithmetic progression of triplets accu-
mulating towards the period-18 domain. Left column: triplet
A1, B1, C1, each of main periodicity 44. Right column: triplet
A2, B2, C2 of main periodicity 62. An apparently unbounded
quantity of additional triplets exists. Note that the parabolic
arcs defining shrimp “heads” [35] may meet or not (see text).
Individual panels displays 1200× 1200 = 1.44× 106 parameter
points.

itself) [35]. Critical points are the basic objects used by
Fatou and Julia to study the properties of iterated rational
functions. For a very complete survey of the classical liter-
ature see Cremer [39]. For more recent literature consult
ref. [40]. Unfortunately, for high-dimensional maps there
are no proper definitions for critical points, multipliers,
and superstable orbits.

Figure 4 shows enlarged views of the three shrimps
forming the vertices A1B1C1 and A2B2C2 of the first two
triplets in arithmetic progression. From fig. 4 one clearly
sees that the trace of the Jacobian matrix is not equiva-
lent to the multiplier. For, although the trace is capable of
exposing two parabolic arcs which resemble the parabolas
generated by multipliers for one-dimensional maps, for the
Hénon map the parabolic arcs are “broken”, i.e., they do
not always intersect, as in panels A1, B1, A2, B2, C2. Fur-
thermore, when they do intersect, the intersection occurs
is not at just a single point but, instead, in an extended re-
gion, as seen in panel C1. These two problems are generic
difficulties present in all higher-dimensional systems. To
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Table 1: Period ki, coordinates, areas and centroids of the triangles in arithmetic progression, shown in fig. 5. The values in
the bottom line are extrapolated values. See text.

i ki aAi
bAi

aBi
bBi

aCi
bCi

Area × 108 acentroid bcentroid

1 44 1.12878432 0.42556190 1.12924456 0.42542796 1.12917220 0.42570713 5.93966512 1.12906703 0.42556566
2 62 1.12942445 0.42515476 1.12958722 0.42513889 1.12966421 0.42525273 0.98757841 1.12955863 0.42518213
3 80 1.12957064 0.42504772 1.12967360 0.42505563 1.12976177 0.42513312 0.36404728 1.12966867 0.42507882
4 98 1.12962318 0.42500862 1.12970509 0.42502402 1.12979458 0.42508885 0.19660397 1.12970762 0.42504050
5 116 1.12964741 0.42499058 1.12971932 0.42500938 1.12980916 0.42506822 0.12710962 1.12972530 0.42502273
6 134 1.12966058 0.42498084 1.12972700 0.42500162 1.12981689 0.42505705 0.09068732 1.12973482 0.42501317
7 152 1.12966845 0.42497497 1.12973143 0.42499706 1.12982147 0.42505030 0.06820358 1.12974045 0.42500744
8 170 1.12967360 0.42497116 1.12973422 0.42499418 1.12982446 0.42504592 0.05295770 1.12974409 0.42500375
9 188 1.12967713 0.42496855 1.12973609 0.42499224 1.12982644 0.42504289 0.04229662 1.12974655 0.42500123
10 206 1.12967971 0.42496670 1.12973741 0.42499088 1.12982789 0.42504073 0.03442693 1.12974834 0.42499944
11 224 1.12968156 0.42496529 1.12973837 0.42498989 1.12982896 0.42503912 0.02841212 1.12974963 0.42499810
...

...
...

...
...

...
...

...
...

...
...

55 1016 1.12968365 0.42496342 1.12973944 0.42498857 1.12982988 0.42503696 0.02129941 1.12975092 0.42499632
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Fig. 5: The first 11 triangles of an apparently infinite arith-
metic progression accumulating towards a period-18 boundary.
The difference of the periods between two consecutive triangles
is also 18. Grid resolution: 3000× 3000 parameter points.

bypass trace peculiarities and to be able to define unam-
biguously all shrimp heads [35], here we interpolated bro-
ken parabolic arcs and used their points of intersection to
define triangle vertices.

Areal scaling. – Figure 5 shows the location and
the strong compression undergone by the first 11 trian-
gle triplets which accumulate in arithmetic progression
towards the period-18 boundary as they successively get
more and more squeezed. Red dots mark the centroid of
the triangles, namely the intersection of the three trian-
gle medians. The coordinates of the triangle vertices are
recorded, their area, and their centroid coordinates are col-
lected in table 1. These numerical values were obtained
by measuring them from individual blowups (not given
here) for every triangle. Noteworthy is the fact that the
period difference between two consecutive triangles is 18,
the same period boundary horizon towards which they ac-
cumulate. As mentioned above, this situation is analogous
to the one previously observed in a damped-driven Duff-
ing oscillator [12] and in the self-pulsations of a CO2 laser
with feedback [10,11].

As seen from fig. 5, vertices tend to accumulate fast, in
a narrow parameter interval. This tendency may also be

seen in table 1. Accordingly, an interesting issue is to de-
termine their accumulation points and rate of convergence.
To find them, we proceed as follows: i) Firstly, we compute
the successive differences between the coordinates (a, b) for
vertices and centroids of each triangular region; ii) from
these differences, a fitting equation for each sequence is
derived; iii) using these fitting equations we estimate the
coordinates for extrapolated triangles; iv) the extrapola-
tion process is extended until quantities remain constant
to eight decimal digits. The convergence rate of the trian-
gles towards the asymptotic horizon is found to be unity.
The resulting extrapolated values are listed in the last line
of both tables above. For i = 55, the listed values for the
area and centroid were obtained from the extrapolation,
not from the vertices coordinates in the table, although
both sets of values essentially coincide. Remarkably, trian-
gles seem to accumulate just before reaching the period-18
horizon leg in front of them. Perhaps extrapolations using
more than 11 triangles could reveal the extrapolated val-
ues coming closer or even coinciding asymptotically with
the convergence horizon. However, it becomes increasingly
more difficult to reliably detect triangles when the period
further increases. The precise location of the convergence
horizon is therefore left as an open question for further
investigation.

As a last result, in fig. 6 we collect a number of triangu-
lar stability islands which “break the symmetry”, namely
that do not fit unambiguously in the above scenarios but,
instead, display more exquisite shapes and organizations.
For instance, the box in fig. 6(a), magnified in fig. 6(c),
displays a pair of shrimps that under low resolution may
appear as uncorrelated but that are in fact interconnected,
forming a triplet. Figure 6(d) shows that a period-22
triplet is partially overlapping the leftmost partner of a
larger period-16 triplet. In reality, the period-22 triplet
is interconnected with a fourth shrimp located farther to
the right, as indicated. Therefore, it is possible to cir-
culate continuously from one shrimp to the others with-
out ever having to cross the vast sea of chaos surrounding
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Fig. 6: Magnifications of the pair of boxes seen in fig. 2(f) showing some exquisite and much more complicated triplets.

them. Several additional triplets exist in these regions,
but are too small to be identified under low resolution.
Analogously, fig. 6(b) contains several triplets that may
be easily seen under higher resolution. Of particular in-
terest in this panel is the region inside the box, magnified
in fig. 6(e). First, the leftmost and smaller box shows a
sort of symmetric triplet which also exists in other regions
of the parameter space. However, the most curious triplet
is located inside the rightmost box, magnified in fig. 6(f).
In this box, one finds a period-24 triplet that is intercon-
nected with a very complex structure of the same period.
Such highly complex structures exist abundantly and are
frequently found to be interconnected with less compli-
cated structures sharing the same period. As is known, at
present there is no theoretical framework to explain the
origin of any of such structures, highly complex or not.

Conclusions and outlook. – We studied metric prop-
erties of certain triangular stability islands covering ex-
tended areas in control parameter space and which are
abundantly present in flows and maps. Such triangular
islands appear both as isolated forms or as forming ap-
parently unbounded arithmetic progressions. In contrast
with the familiar scalings in the literature, the unfolding
of areal scaling requires tuning more than one control pa-
rameter simultaneously. A significant feature of the arith-
metic progression is that it displays specific accumulation
points, both for triangle vertices and their centroid coor-
dinates. Although the emphasis here was on a specific
period-18 accumulation, we find accumulations to be a
rather common phenomenon, involving analogous arith-
metic progressions and many other periods. The accu-
mulation unfolds systematically and is fast. Accordingly,
the convergence to an almost constant value of the area
was observed. Furthermore, we find the arithmetic pro-
gression to converge to a well-defined asymptotic horizon

whose period coincides with the constant rate of period
increase of the arithmetic progression. It is not yet clear
if the arithmetic progressions involve a finite or an infinite
number of terms. A particularly promising system for in-
vestigating two-parameter scalings is the analytical path
discussed in fig. 2 of ref. [41], for the so-called canonical
quartic map. In conclusion, the metric properties of ex-
tended progressions of stability structures whose accumu-
lation in control parameter space depends on more than
one parameter were studied in detail and characterized
numerically. We are not aware of any previous study of
the scaling of properties depending on the variation of
more than one parameter simultaneously. Our results are
also relevant for flows, systems governed by differential
equations. It would be interesting to compare the present
findings with analogous ones for ratchets and the afore-
mentioned flows representing semiconductor laser diodes,
electronic circuits, and other promising systems.
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