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Abstract We show that a recent conjecture about the possible existence
of an infinite number of exact eigensolution pairs for the z¥ + Az?/(1 + gz?)
interaction having A and g connected by A = —(6g% + 4¢g) is true. A con-
structive method for explicitly obtaining these solutions is given. In ad-
dition, we present a REDUCE implementation of the constructive method
which allows solution pairs to be easily generated on personal computers.

1. Introduction

In a recent paper!, we showed that the perturbed harmonic oscillator
z? + Az?/(1 + g=%)

admits five pairs of exact analytical eigensolutions having the parameters X and ¢
connected by the relation A = —6¢® — 4¢g. It was also conjectured that an infinite
number of such solution pairs should exist. Qur conjecture was proved by Vanden
Berghe and Meyer? and Lakhtakia®. The purpose of this brief paper is to provide
a simple constructive proof of the same conjecture, Qur proof was obtained by
us simultaneously and independently of the aforementioned authors. We believe
our result to be of interest because it provides a trivial mean of generating, in
principle, all solution pairs. The generation of an arbitrary number of solution
pairs can be easily implemented on personal computers able to perform algebra
and an example of one such implementation, written in REDUCE, is given here.

The potential z? + Az%/(1+ g2?) is of interest in laser physics (as the reduction

of the Fokker-Planck equation of a single-mode laser under suitable conditions), in
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elementary particle physics {as a one-dimensional Schrodinger equation associated
with a zero-dimensional field theory) and in nuclear physics {as being able to
reproduce sequences of energy levels in the shell model). (For specific references
see, for example, reference 1 and references therein.}

An interesting aspect of the = + Az?/(1 4+ gz?) interaction with negative A
(as is the case here since A = —6g% — dg, ¢ > 0) is that the potential behaves
asymptotically like a harmonic oscillator but contains a double minimum. Double
minimum potentials have been used in the quantum theory of molecules as simple
dynamical models to describe the motion of a particle subject to two centers of
force. Double minimum potentials are also of great interest in the investigation of
diffusive processes in general (quantum tunneling), models for bistable dynamics?
and in the quantum theory of instantons®. The most used examples of double
minimum potentials involve functions containing discontinuzous derivatives. The
potential considered in this paper, as well as its derivatives, is continuous and has
a pair of analytical éigensolutions. For a discussion of these matters we refer to
the recent review paper of Razavy and Pimpale®.

The problem we want to address consists of obtaining pairs of simultanecus

eigensolutions of the Schrodinger equation
@:._._mlﬁu\»HN\E.TQHJ_%HP g >0, (1)
for z in the interval (—oo0, 00), having the generic form

o{z) = exp (—12?) (1 + gz%)z, (2)
(2} = exp AE

with

§ .
onfz) =) et (4)
=0

where the subindices o and e refer to the symmetry of the eigensolutions. The
first five twin solutions have been obtained in reference 1. We now show how to

generate twin solutions for arbitrary N,
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Substituting ¥, from equation (2) in the Schrédinger equation (1) one obtains
equations yielding
€, = 3 — Bg, {5)
A= —8g* — 4g. {6)

From the substitution of ¥, in equation (1) one readily obtains

N N
MU 2i(26 — 1)e;z™ + MU (ee + 4gi® + 6gi + 2g — 41 — C cizttte
£220 =0 Hﬂu

N
+ MU (gge — A — dgi — 5g) e;z* 1 = 0.
1=0

From the coefficients of £%* it follows that

2020 — Vje; + {20(20 — 1)g — 4i + 3 +e.]eiyg
+[3g + ge. — A — dgt|e; g =0, : (8)

valid for 1 = 1,2,..., N + 2.When { = NV + 2 equation (8) gives

4Ng -+ 5g — g + A =0. {9)
Since according to equation (6} we have A = —6¢* — 4g, it follows that
e, = 4N — 6¢g + 1. {10}

It is interesting to observe that the energy difference between the two states de-
pends only on IV:

Ae =g, — £, = 4N — 2. (11)
Equations (6) and {10} may now be used to simplify relation (8), giving the relation

-1

mﬁﬁwﬂiﬁﬁT;Elau+:2zm+:FL+g£21m+3s$TASV

c; =
valid for 1 = 1,2,...,N 4+ 2. For ¢ = 1 equation {12) gives
c; = AMQ - Nzuno. Au_.mu
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Now, equations (12} and (13) can be used to generate all coefficients ¢; ap-
pearing in {4) as functions of ¢p. For convenience we may set ¢ = 1, since the
exact normalization is not important here,

The condition that all e; should vanish for ¢ > N allows us to obtain (from
equation (12) with { = N + 1} a relation between cy and cp_1

-2
(N +2)(2N -1)

CN = CN-—1- CAV

The polynomial equation defining the possible g values! may now be easily ob-
tained by forcing ¢y and ¢y ) obtained from the recurrence relation (12) to obey
the constraint relation {14).

- The above results were used to write the following REDUCE program:

OFF ECHD $

OPERATOR C §

N = B §$

c) :=1%

C(1) := 2=(G-N) $

CTE  := -2/({(N+2)*(2+N-1)) $

LAST := CTE*C(N-1) $

FOR [ := 2:K DO

C(I)  := - ( (2*I#(2xI-1)*G - 6xG + 4% (N-I+1))*C(I-1)

+4GR(N-T+2)*%C(I-2) )/ (2+I»(2%I-1)) $
FOR I := 1:N-1 DO WRITE "e(r,I,")= ", C(I) §
WRITE "C(",N,")= " CTE." * C(" ,N-1,")" §

WRITE " G POLYNOMIAL : " §
WRITE NUM(C(N)-LAST)," =0 " §
END $

This program was implemented on a personal computer and, by changing the
value of IV on the third program line, used to generate all five solutions presented
earlier!. The program was further used to generate new twin solutions. Table
I presents a summary of the first 15 solutions, together with the corresponding

values of &,, g, and V5, the value of the minimum of the potential. Defining
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2

min

R? = 2¢(3g + 2) = —X it is easy to see that the minima are located at =

{R —1)/g and that
1
Vigin = —— (R — 1)%.
qﬁ )

(15)

Table I - Values of ¢ for which twin solutions exist. Ag = gy —
gN-—1-*; Viin, €0 and &, are defined in equations (6}, (15), (5) and (10)
respectively. Note that for ¥ = 1 and 2 the energy of the even state

lies above the relative maximum V =0 at z = 0.

N g Ag A Vimin Eo Ee
1 0.66667 — =53 —2.6 —-1.0 1.0
2 1.45743 0.79076 —~18.6 —7.5 -5.7 0.3
3 2.23486 0.77743 —38.9 —12.3 —10.4 —0.4
4 3.00979 0.77494 —66.4 —-17.0 —15.1 -1.1
5 3.78383 0.77403 -101.0 —21.7 —19.7 - 1.7
6 4.55743 0.77361 —142.9 ~263 . —24.3 —2.3
T 5,33080 0.77337 —191.8 —-31.0 —29.0 —-3.0
8 6.10403 0.77322 —248.0 —35.6 —-33.6 -3.6
9 6.87716 0.77313 —-311.3 —40.3 -38.3 -4.3

10 7.65022 0.77306 —381.8 —44.9 -42.9 —-4.9

11 8.42323 0.77302 —459.4 —-49.6 —47.5 —-5b.5

12 9.19622 0.77298 —544.2 —54.2 ~52.2 —6.2

13 9.96917 0.77295 —636.2 —58.9 —56.8 —-6.8

14 10.74210 0.77293 —T735.3 -63.5 —61.5 7.5

15 11.51502 0.77292 —841.6 —68.1 —66.1 —-8.1

Figure 1 shows the potential %+ dz%/(1 + g2?) together with two asymptotic

? and z® — 69 — 4. Superimposed to these

potentials (shown as dashed lines): =z
potentials we show the solutions ¥, and .. The vertical positions of 3, and #,
correspond to the exact locations of their corresponding eigenenergies. To im-
prove the readability of the figure, the normalization of the eigenfunctions was

conveniently chosen so that their total amplitude corresponds to 25% of the full
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Fig. 1 - Eigenfunctions 9, and 1), together with the potential 2+ \/Hu\ﬁ. +
Q&J (solid curve) and two asymptotic potentials (shown as dashed lines): T

and 22 — 6g — 4. The height of the functions corresponds to the exact position
of the energy eigenvalues.
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scale. All 4, were obtained by evaluating numerically on a personal computer
the coefficients ¢; in eq.(12). As a caveat to the reader we remark that the re-
currence relation (12} is very sensitive to the value of g. Preliminary runs using
the 6-digit values of g given in Table I, failed to generate the correct eigenfunc-
tions. In particular, the ¢ value used in Figure 1 to generate ), for N = 10 was
7.650218591050418350. Sensitivity on @mama.ﬁ.ma is a well-known property of re-
currence relations. At this stage we do not see any need for a more stable (possibly
backwards} recurrence relation.

In summary, the potential z* + Az%/(1 + g2?) with A and g connected by
X = —6g° —4g, g > O contains an infinite number of closed form eigensolution
pairs. The pairs consist of an odd and an even solution having an energy difference
depending only on the degree of excitation of the even function (see eq.(11) above).
We presented a computer program written in REDUCE allowing the easy genera-
tion of these eigensolutions on personal computers. The potential investigated is
a quite rare example of a continuous double-minimum potential containing a pair

of exact analytical eigensolutions.
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Resumo

Mostramos que uma conjectura recente sobre a possivel existéncia de um
niimero infinito de pares de solugdes préprias exatas para a interagio =2 + Az?/(1+
¢z*) com A e g relacionados por A = —(6¢% - 4g) é verdadeira. Damos ainda um
método construtive para obter explicitamente estas solugdes. Além disso, apresen-
tamos também uma implementagio em REDUCE deste método construtive que
permite gerar algebricamente pares de solugdes em microcomputadores do tipo

PC.

99



