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ABSTRACT

We show that a characteristic alignment between Lyapunov vectors can be used to predict regime changes as well as regime duration in the
classical Lorenz model of atmospheric convection. By combining Lyapunov vector alignment with maxima in the local expansion of bred
vectors, we obtain an effective and competitive method to significantly decrease errors in the prediction of regime durations.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0013253

Forecasting the dynamics in complex systems is nowadays one of
the outstanding challenges for researchers around the world. So
far, there is no adequate physical quantity capable of making pre-
cise predictions about the future in chaotic systems. Therefore,
any additional method or property that helps the predictabil-
ity mission is most welcome. Recently, it was shown that the
alignment between Lyapunov vectors is closely related to the
occurrence of extreme and rare events in chaotic systems and that
such alignments can help to predict rare events. This key piece
of information is used here to predict regime changes as well
as regime duration in the paradigmatic Lorenz 1963 model of
atmospheric convection. We show how to combine two familiar
tools, namely, Lyapunov vector alignment with maxima observed
in the local expansion of bred vectors, to significantly decrease
errors in the prediction of regime durations, thereby providing
competitive predictions for the onset of large and possibly catas-
trophic events. These combined tools seem to be particularly well
suited for complex systems displaying two-wing (Lorenz’s case)
or multiple-wing chaotic attractors.

I. INTRODUCTION

The ability to predict the future based on past and present
data is of high relevance in several distinct areas such as, e.g.,

forecasting climate changes, stock markets, virus propagations, crit-
ical transitions, extreme and rare events, which include giant ocean
waves, extreme weathers, lasers peaks, among others.1 The dynam-
ics in such realistic problems is typical of highly nontrivial high-
dimensional complex systems, and there is no model that can fully
describe them. Instead of using models, several forecasting methods
rely directly on data sources from the real world itself. Therefore,
forecasting dynamical behaviors of complex systems is an extremely
challenging open problem. Using distinct methods, considerable
effort to improve forecasting tools has been done during the last
few years, including machine learning techniques.2 The main issue,
however, namely, to reveal the fundamental principles behind the
mechanism of predicting the future remains obscure. In this context,
a significant development3,4 toward understanding the mechanism
behind forecasting was the observation that an alignment of Lya-
punov vectors (LVs) occurs before the appearance of large peaks in
chaotic three-dimensional continuous systems.

The goal of this work is to show that the alignment of LVs
is able to predict not only regime changes, but also the duration
of individual regimes as described by the standard Lorenz model
of atmospheric convection.5 Before a change of a given regime,
the LV of the most unstable direction is found to align along the
flow direction, characterized by the direction of the LV associated
with the zero Lyapunov exponent. The LVs considered here are
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the covariant Lyapunov vectors.6 They are obtained by integrat-
ing the equations of motion forward and backward along the same
trajectory6–11 and have been calculated in a multitude of realistic sys-
tems, such as systems coupled to deterministic thermal reservoir,12

in cluster synchronization of scale-free networks of chaotic maps,13

the regeneration cycle in wall turbulence,14 in the traffic of vehicles,15

to describe dynamical trapping in conservative maps16 and the
transformation of conservative tori in dissipative sinks,17 interact-
ing neutrino gas,18 turbulence in a partial differential equation,19 a
toy model in ocean-atmosphere,9 angle enhanced bifurcation dia-
grams in the Hénon map,20 hyperbolicity estimation in 2D chaotic
maps,21 super-Lyapunov growth in the Lorenz system,22 periodic
windows corresponding to unstable periodic orbits,23 to predict crit-
ical transitions,24 among others. In all these systems, the LVs were
used in different ways for a deeper understanding of the dynam-
ics. As it is well-known,25 for certain parameter values, the Lorenz
model displays a characteristic butterfly-looking two-wing chaotic
attractor, illustrated in Fig. 1, arising from back-and-forth oscilla-
tions around two unstable fixed points of the system. It is common
to associate oscillations around each such wing of the butterfly to
a weather regime, designating them right (R ) and left (L ) regimes.
The possibility to predict regime changes, and their duration, has
been studied earlier using the concept of bred vectors (BVs)26 and
the maximum of a peak (for a given variable) right before the regime
changes.27

In the present work, we show that the alignment of LVs is more
efficient to predict regime changes when compared to predictions
made solely by bred vectors and somewhat similar to a method-
ology that uses the aforementioned maxima of the peaks of one
variable. The alignment of LVs gives a clear mathematical descrip-
tion of the ability to predict regime changes and regime durations.
We found a direct relation between the alignment of LVs and the
predicted regime duration. In other words, once the alignment of
LVs is observed, it is possible to estimate the duration of the pre-
dicted regime. By suitably combining results obtained for LVs and
BVs, we significantly decrease the amount of errors in the regime
prediction times.

FIG. 1. Angle enhanced Lorenz attractor in (x, y, z) coordinates and colors indi-
cate the values of the angle θ between the unstable invariant manifold and the
flow direction.

The paper is organized as follows. In Sec. II, we present briefly
the Lorenz model and display the angle enhanced chaotic attractor
for specific parameters of the model. Sections III and IV describe,
respectively, the ability of the alignment of LVs to predict regime
changes and regime lengths. In Sec. V, we illustrate a new way to use
properties of the bred vectors to predict regime times. Section VI
describes how to improve errors in the prediction times by com-
bining results for LVs and BVs. Section VII summarizes our main
results.

II. THE LORENZ SYSTEM AND THE ANGLE ENHANCED

ATTRACTOR

The 1963 Lorenz model of atmospheric convection is governed
by the flow,5

ẋ = σ(y − x), (1)

ẏ = r x − y − xz, (2)

ż = xy − b z, (3)

where (x, y, z) are dimensionless variables that evolve in continuous
time t, (ẋ, ẏ, ż) are the associated velocities, and (σ , r, b) are real and
positive parameters.

In Fig. 1, a typical trajectory is shown for σ = 10, b = 8/3,
and r = 28, starting from the initial condition close to the unsta-
ble fixed point at x = 0.1, y = 0.2, and z = 30. For these parameters,
the attractor in Fig. 1 has Lyapunov exponents λ1 = 0.91, λ2 =

0.00, and λ3 = −14.6, calculated in the natural logarithm base. One
Lyapunov exponent is always zero since the dynamics is a flow,
i.e., time continuous. The associated unitary covariant LVs are v1,
v2, and v3, pointing along the unstable, flow and stable invari-
ant manifold directions, respectively. The angles between the LVs
are then determined for each integration time from the expression
ϕij = cos−1

(

vi · vj

)

. In this work, we used only the angle θ = ϕ12,
i.e., the angle between the unstable manifold and the flow direction.

In Fig. 1, colors represent the values of the angle θ along the
trajectory. Equations (1)–(3) were solved numerically using a stan-
dard fourth-order Runge–Kutta algorithm with a fixed time step
h = 0.05. The first 107 time steps were discarded as transient,
and the LVs were computed subsequently for 6 × 105 time steps
(including forward and backward time motion).

As mentioned, the Lorenz attractor is well-known, being essen-
tially the combination of two connected spiraling motions, one on
the right, for (x, y) positive, and another one on the left, for (x, y)
negative. Each spiral represents a regime denoted as R (right one)
and L (left one). From Fig. 1, we observe that the external portion
of the spirals in different regimes has distinct values of θ , namely,
[0, π/2] for the R loops and [π/2, π] for the L loops. In addition, on
the top border of each loop, θ tends to become close to 0 for R and
close to π for L. For details about plotting angle enhanced attractors,
see Ref. 20.

III. PREDICTING REGIME CHANGES

The time series for the variables (x, y) of the representative tra-
jectory shown in Fig. 1 consists of oscillations inside the regime and
some regime changes when oscillations escape to the other butterfly
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FIG. 2. Time evolution of x (black curve), y (green curve), and θ (red curve). For
reference, the pair of dashed horizontal lines (blue) marks the values of 0 and π .
Arrows indicate representative prediction times.

wing. This time evolution can be better observed in the time win-
dow shown in Fig. 2. For better visualization, in this figure, we plot
the system’s variables in a different scale than the angle. The black
curve is the variable x, the green curve the variable y, and the red
curve the angles θ .

Clearly, one sees that the variables (x, y) change sign, (i.e.,
change regime) almost simultaneously. Interesting is that before
regime changes, θ comes close to zero for changes R → L and close
to π for changes L → R. Two examples of such prediction times
are indicated by the black arrows in Fig. 2. This behavior can be
checked visually in Fig. 2 for almost any regime change, suggesting
that changes are to be expected for times after which

θ → θ (min) ≈ 0 for R → L

or

θ → θ (max) ≈ π for L → R.

The values θ (min) ≈ 0 and θ (max) ≈ π correspond to the alignment of
the unstable manifold along the flow direction, i.e., the alignment of
LV v1 along the flow direction.

In order to give a quantitative description of regime forecasting,
we analyze in more detail the attractor shown in Fig. 1. Altogether, it
contains 1728 regime changes, and all of them can be predicted for
a given time by looking at the values of θ . The difference between
the time for which a regime change occurs and the time for which
θ → θ (min) [or θ → θ (max)] is called lead time. The lead time as
a function of θ (min) and θ (max), obtained right before the regime
changes, is plotted in Fig. 3. Thus, there is an associate lead time
for each angle that approaches θ → θ (min) [or θ → θ (max)].

Our results show that for angles very close to 0 or π , the lead
times are shorter, close to 0.2. Larger lead times for regime changes
can be obtained for values away from 0 or π . For the integrated
times, no regime changes are observed when θ (min,max) is inside the
interval [3π/8, 5π/8]. Figure 3 also illustrates the symmetry of lead
times between angles θ (min,max). In other words, lead times are sym-
metric between R → L and L → R. Due to the peaks and valleys

FIG. 3. Lead time plotted as a function of the minimum (between 0 and π/4) and
maximum (between 3π/4 and π ) angles. Dark triangles in the middle represent
times before regime changes that our method could not predict.

preceding the maximum and minimum within each regime, we only
consider values less than π/4 away from the alignment.

Next, we evaluate the ability of the alignment of LVs to predict
regime changes when compared to methods that use bred vectors26

and the maxima of the peaks (MP).27 To obtain bred vectors, con-
sider a reference trajectory A and a perturbed trajectory P . The
modulus of the BVs (|B| = B) is the Euclidean distance between P

and A, determined at the end of each breeding cycle. In the case of
BVs, two rules were used: 1 BV—when the BV exceeds 0.064 during
eight steps of the time evolution, then the regime will change and
2 BV—the duration of the new regime is proportional to the number
of eight BV steps that exceeded 0.064 in the previous regime. Table I
reproduces results obtained from BVs as reported in Ref. 26. For
example, in the first line of Table I, the 1 BV rule was able to predict
correctly 187 regime changes and 13 false alarms from a total of 200
regime changes. This gives a hit rate of 93.5%, which is the percent-
age of the predictions correctly anticipating a subsequent change (or
lack) of regime. The false alarm rate is 6.5%, which is the percentage
of predicted regime changes that did not occur.

In the case of MP, there are two simpler rules, namely,
1 MP—when x(t) & 14.8, the current regime will change and
2 MP—the length of the new regime increases monotonically with
the maximum value of |x(t)| from the previous regime. Table I also
reproduces the results obtained from rule 1 MP as given in Ref. 27.

TABLE I. Number of forecasted/observed regime changes using rules for BV|MP|LV

(BV and MP are reproduced from Refs. 26 and 27, respectively).

Fcst/Obs Yes No Total

BV MP LV BV MP LV BV MP LV

Yes 187 266 1722 13 0 0 200 266 1722
No 33 1 6 299 386 0 332 387 6
Total 220 267 1728 312 386 0 532 653 1728

Chaos 30, 103109 (2020); doi: 10.1063/5.0013253 30, 103109-3

Published under license by AIP Publishing.

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

The hit rate is now 99.65% and not predicted cases are 0.35%, miss-
ing to predict only one regime change, as can be observed in the
second line of Table I.

In the case of the alignment of LVs, the rules are as follows:
1 LV—when the angles are 0 ≤ θ (min) . π/4 and 3π/4 . θ (max)

< π , the current regime will change and 2 LV—the length of the new
regime increases monotonically with θ (min) approaching zero and
θ (max) approaching π (this property will be demonstrated in Sec. IV).
Applying rule 1 LV, our results regarding hit rates and false alarms
are presented in Table I. The efficiency is similar to the MP pro-
cedure. We mention, however, that the alignment of LVs is able to
predict any regime change in the Lorenz system by letting rule 1 LV
be very flexible.

IV. PREDICTING REGIME DURATION

Remarkable behavior is obtained when correlating the angles
θ (min,max)

n with the duration of the regime predicted by them, defined
as 1tn+1, where the index n identifies the nth regime. This is illus-
trated in Fig. 4, where 1tn+1 is plotted as a function of the minimal
and maximal angles used to predict 1tn+1. In this section, we expand
our analysis to 5 × 106 regimes. Figure 4 clearly shows that, as
θ (min)

n → 0 and θ (max)
n → π , the duration of the regime they pre-

dict increases very fast. The discreteness observed in the values of
1tn+1 arise because regime changes occur only when the variables
(x, y) cross the origin. Consecutive crossings can only occur after
one oscillation of these variables (see Fig. 2). This can be checked
by comparing the interval of discreteness in Fig. 4, which is around
0.8 (a.u.), this being the average time of one turn in each spiral. We
mention that the qualitative behavior in the plane 1tn+1 × θ (min,max)

n ,
presented in Fig. 4, is somewhat similar to the behavior presented in
Ref. 27 using the MP method. Due to the discreteness, a clustering
of points at specific values of 1tn+1 is observed.

FIG. 4. Regime duration1tn+1 as a function of the minimum andmaximum angle

θ
(min,max)
n in each regime. Red curves represent a fit and blue stars mark the cluster
centroid. The inset (a) highlights the classification of clusters and (b) amplifies a

region where one value of θ
(max)
n corresponds to several values of 1tn+1. The

numbers shown for each cluster are the number of laps around the unstable fixed
point at the lobe center for each regime. See the text.

The number of laps (rotations) around the unstable fixed point
for each regime can be used to classify the clusters, as indicated by
the numbers in the insets (a) and (b) from Fig. 4. The number of laps
during a regime is associated with the duration of the regime and
is given, directly, by the number of peaks (right regimes) or valleys
(left regimes) in the time series of the x variable.2 Thus, each clus-
ter has a fixed value of laps. Regimes with longer durations have a
larger number of laps. Such classification considering the number of
peaks or valleys inside the regimes was used recently to train multi-
layer perceptron.2,31 The density of points in Fig. 4, when θ (min)

n → 0
and θ (max)

n → π , suggests that regimes with long durations are rare.
Numerical results confirm that while regimes with a short duration
occur very often, regimes having a long duration tend to be extreme
and rare events. In other words, from Fig. 4, we conclude that these
extreme and rare events can be predicted only when θ (min,max)

n is very
close to 0 or π , respectively.

In order to understand the average behavior of the relationship
between the duration 1tn+1 of the regimes and the angles θ (min,max)

n ,
we determined the centroid of the clusters (blue stars in Fig. 4) and
adjusted a curve for each side (L and R) according to these points. In
the same figure, the red curves represent the fitting given by

1t(min)

fit = a1 +
b1

[

1 + c1θ
(min)
n

]d1
, R → L, (4)

1t(max)
fit = a2 +

b2
[

1 + c2

(

π − θ
(max)
n

)]d2
, L → R. (5)

Given the symmetry in the distribution of the points in Fig. 4, it
is expected that the constants of the same position in Eqs. (4) and (5)
are equal. However, small numerical differences lead to different
values for these constants, being

a1 = 0.179, b1 = 15.9, c1 = 36.1, d1 = 1.56,

a2 = 0.254, b2 = 15.7, c2 = 32.7, d2 = 1.67.

In Fig. 4, the inset (a) displays a magnification of a region near
the minimum of the angle θ . This plot highlights the numbered clus-
ters formed in the plane θ (max)

n × 1tn+1, as already mentioned, due
to the number of laps within the regime. The red line shows that
the cluster average 1tn+1 increases very fast when approaching the
extreme angles, as proposed in Eq. (5). Projections of overlapping
islands on the angle axis are highlighted in inset (b). Such features
lead to an error factor for predicting regime durations. For example,
the vertical dashed line indicates a value for the angle, θ (max)

n = 3.06,
for which there is an uncertainty between two islands and the pre-
diction curve points to the central value. To solve this, in Sec. VI, we
propose a solution for this uncertainty and improve predictions by
combining the data from this section with data from bred vectors.

The overlapping of the projection of the clusters on the angle
axis, observed in the Fig. 4, leads to prediction errors. When more
clusters overlap, more significant is the error. A function that relates
the angles to the durations of the regimes will always bring a con-
siderable error. We quantify the MSE (Mean Square Error) resulting
from a step function, used as the prediction function, in the same
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FIG. 5. Regime duration1tn+1 as a function of the minimum andmaximum angle

θ
(min,max)
n in each regime for a specific interval of angles. Red curves are the
adjustment from Eq. (6) and blue stars mark the cluster centroid.

range of angles as the inset in Fig. 4(b),

D
(

θ (max)
n

)

= Ci, being ti−1 ≤ θ (max)
n < ti. (6)

Here, D is the predicted duration for the next regime, Ci is the value
of the ordinate in the centroid of the ith cluster, and ti the transition
between cluster i and i + 1. In the range 3.02 ≤ θ (max)

n ≤ 3.09, we do
not need to define t0. In Fig. 5, we illustrate the behavior of Eq. (6)
(red curve) together with the numbered clusters. It is important to
mention that li+1 < ti < ri, where li+1 is the left extreme of the (i +

1)th cluster and ri is the right extreme of the ith cluster, as shown by
the dashed vertical lines in Fig. 5. The transition point ti from one
cluster to the next one is determined so that in the interval [ti, ri], the
ith cluster has fewer points than the following.

We calculate the MSE between the predicted curve and the data
from

MSE =
1

N

∑

n

[

D
(

θ (max)
n

)

− 1t(max)
n+1

]2

, (7)

where 3.02 ≤ θ (max)
n ≤ 3.09 and N is the number of points in this

range. For the example shown in Fig. 5, the result is MSE = 0.320.
Another way of obtaining a forecast for the duration of the

regimes is to assign a value using the average of the nearest neigh-
boring points. We use this technique, called k-NN (k-Nearest
Neighbors),28,29 to determine the k = 3 angles within the dataset
closest to a test angle. Once the nearest points are determined, the
expected duration is the average of the durations at those points.
To determine the error in the forecast, we also calculate the MSE
between the predicted values and the data. Although there is a
considerable overlap and the determination of the neighborhood
outside is only one dimensional, we obtain MSE = 0.198, a signif-
icant improvement when compared to the previous result. The use
of this method is essential for the comparison we make in Sec. VI
since we use the same technique there. For the tests, the data were
randomly separated into two sets of the same size, the first for the
test points and the other for the reference points.

FIG. 6. Variables x (black), y (green), and A (red) in a time window. In this case,
a transient of 105 was discarded and the integration step is δ = 10−3.

V. THE INCREASE OF BRED VECTORS

To display a more significant variation of the bred vectors, the
modulus is calculated after every eight integration steps and then
renormalized with a new perturbation in P . The initial distance
between reference and perturbed trajectories is 10−2. We have also
checked larger perturbations, but they lead to convergence prob-
lems of the bred vectors. Smaller values of the perturbations should
tend to Lyapunov results. Thus, the prediction quality should not
be affected very much by the initial perturbation. Therefore, the
rate of increase of the bred vectors is given by the ratio A(t) =

B(t)/B(t − 8δ): A(t) < 1 indicates an approach of the trajectories P
and A, while A(t) > 1 indicates separation. Here, δ = 10−3 is the
integration time step.

Figure 6 illustrates behavior of A(t) (red curve) for a time win-
dow and compares it to the variable x(t) (green curve). Note that
maxima of A(t) in each regime occur in close regime changes. As for
LVs, this behavior can be used to predict the regime changes.

There is, however, an essential distinction between using LVs
or the maxima of A(t). The angle θ (min,max)

n in Fig. 2 is always above
or below a threshold π/2. For example, for times around 144 (a.u.), a
change R → L occurs and θ remains smaller than π/2 in the begin-
ning of regime L. After some time in L, θ becomes larger than π/2
and remains so until a new regime change is observed. There are no
multiple oscillations of θ around π/2 within one regime. The tran-
sition of θ across the threshold π/2 is already an indication that a
regime change will occur. Such an indication cannot be made for
A(t) in Fig. 6 since no threshold is observed. In the A(t) method,
long regimes are preceded by the most pronounced local extremes in
A(t). In order to relate these local maxima with the duration of the
forthcoming regimes, we define A(max)

n = max{A(τn < t < τn+1)},
where τn is the time starting the nth regime.

Figure 7 illustrates typical results for 1tn+1 as a function of
A(max)

n . This figure shows clearly that larger values of A(max)
n are asso-

ciated with longer regime durations. Again, a clustering of points is
observed, resembling results already seen in Fig. 4.

Similarly to Sec. IV, we identified the cluster centroid (blue
stars in Fig. 7) and numbered the clusters according to the turns
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FIG. 7. Pairs (A
(max)
n ,1tn+1) in gray. The fitted curve 1tfit from Eq. (8) is shown

in red and the cluster centroid indicated by blue stars.

taken within the regime, as shown in the inset. We derive a curve to
fit the centroids, namely,

1tfit = f + g
[

A(max)
n

]h
. (8)

Here, the parameters used are f = 0.580, g = 0.002 34, and h = 93.2,
which correspond to the red curve in Fig. 7.

As with the angles, the overlap of the horizontal projection of
clusters (see the inset in Fig. 7) leads to prediction errors. Here, we
do not include examples of determining these errors.

VI. IMPROVED PREDICTION OF REGIME DURATION

A relevant error in the prediction of the regime duration arises
when we observe in Fig. 4 that for specific values of θ (min,max)

n in
regions with high overlapping, as shown in the inset of Fig. 4(b),

more than one value of 1t(min,max)
n+1 is possible. Besides, inside each

cluster, the values of 1t(min,max)
n+1 vary. This occurs because the clus-

tering of points emerges superposed for certain values of either θ (min)
n

or θ (max)
n . The same difficulty may be recognized in Fig. 7 since for

one value of A(max)
n , more values of 1tn+1 are possible. Even if we use

Eqs. (4), (5), and (8), some error in the determination of the correct
predicted regime duration will occur due to the discretized aspect of
the succession of clusters.

One way to decrease the amount of errors due to cluster super-
position is to increase the dimension of the available quantities for
the prediction. To do so, we combine results from Figs. 4 and 7.
In other words, we combine rule 2 LV with the monotonic prop-
erty of 〈A(max)

n 〉 found in Sec. V. The result of such a combination
is illustrated in Fig. 8, in the plane A(max)

n × θ (min,max)
n . Colors indi-

cate the predicted regime durations 1tn+1. A first observation is
that regions with larger values of 1tn+1 are associated with large
(small) values of A(max)

n and θ (max)
n (θ (min)

n ). The inset of Fig. 8(a) is
a magnification of one of such regions. Here, the remarkable prop-
erty is that, even though the color palette is smooth, colors related
to 1tn+1 become discrete and clearly separated in this plane. This is
even more pronounced for larger values of 1tn+1 and is better visible

FIG. 8. Plane A
(max)
n × θ

(min,max)
n and colors indicating the predicted regime dura-

tion (1tn+1). The inset in (a) is a magnification of a region close to θ
(max)
n = π .

(b) Magnification of the inset of (a) showing one example of an anomalous region.

in the magnification shown in Fig. 8(b). In other words, for spe-
cific values of A(max)

n and θ (min,max)
n , cluster superposition is drastically

diminished, thereby allowing a much better estimation of the asso-
ciated 1tn+1. One example of such an improvement can be given for
the point P = (3.06, 1.070), for which we can determine the dura-
tion of the regime within the values of the region in medium gray;
thus, 1tn+1 ≈ 1.5. The same is not possible if we individually take
the values of A(max)

n or θ (min,max)
n , as shown in the insets of Figs. 4

and 7.
We apply the k-NN method as a predictor to quantify the

improvement in the forecast as a result of considering the two infor-
mation, θ (min,max)

n and A(max)
n , compared to the forecast obtained with

only one information, as shown in Sec. IV. For this, we randomly
separated the dataset into two subsets of the same size, one with
the test points and the other with the references. We consider the
same range of angles as in Sec. IV, which is 3.02 ≤ θ (max)

n ≤ 3.09,
but now with all associated A(max)

n values. With the proposed tech-
nique, we obtained MSE ≈ 0.006, which is two orders of magnitude
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less than the result from the step function and 33 times less than
the result obtained with k-NN considering just one quantity as
information.

There are still some anomalous regions, as exemplified in the
magnification shown in Fig. 8(b). It shows that for a given pair in
the plane A(max)

n × θ (min,max)
n , which is inside the anomalous region,

the predicted time 1tn+1 ≈ 3.0 (yellow color) is very close to points
in the plane related to the yellow colors in the upper right corner
of Fig. 8(b). However, anomalous regions are relatively small when
compared to the whole plane A(max)

n × θ (min,max)
n .

VII. CONCLUSIONS

In this work, we used the alignment of Lyapunov vectors to pre-
dict regime changes and regime durations for the standard Lorenz
model of atmospheric convection. For the parameters chosen here,
the Lyapunov spectrum obeys λ1 > 0, λ2 = 0, and λ3 < 0, which
are associated, respectively, with the unstable manifold direction,
the flow direction, and the stable manifold direction. We show
that each time the angle between the unstable direction and the
flow direction satisfies the alignment conditions, namely, θ → 0 or
θ → π , a regime change occurs after the alignment. Our results
give a nice mathematical demonstration of the adequacy of com-
bining bred vectors30 with the LV alignment to predict regime
durations.

A very promising tool extracted here from the alignment of
LVs is applied to predict the regime duration 1tn+1. This quan-
tity provides a monotonic relation between the alignment of vectors
θ (min,max)

n and 1tn+1. Such a relation was well described by the
adjusted curves given by Eqs. (4) and (5). In addition, we have
also shown that a monotonic relation exists between the maxima
of the increasing rate (A(max)

n ) of the bred vectors and 1tn+1. The
adjusted curve for this relation is given by Eq. (8). As shown, cer-
tain errors in the predictions may occur due to the clustering of
points around specific values of 1tn+1. Such a drawback occurs both
for LVs and A(max)

n . Fortunately, such errors can be significantly
decreased by combining results obtained from Lyapunov vectors
with those from bred vectors. In other words, combining the align-
ment of LVs and A(max)

n in just one plane, 1tn+1 values tend to
become discrete and separated in such a plane. This allows us to
predict regime duration with a much better accuracy. We apply the
k-NN method as a predictor to quantify the improvement in the
forecast as a result of considering the two information, θ (min,max)

n and
A(max)

n , compared to the forecast obtained with only one informa-
tion. With the proposed technique, we obtained 33 times less error
than the result obtained with k-NN considering just one quantity as
information.
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