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ABSTRACT

We report the discovery of a regular lattice of exceptional quint points in a periodically driven oscillator, namely, in the frequency–amplitude
control parameter space of a photochemically periodically perturbed ruthenium-catalyzed Belousov–Zhabotinsky reaction model. Quint
points are singular boundary points where five distinct stable oscillatory phases coalesce. While spikes of the activator show a smooth and
continuous variation, the spikes of the inhibitor show an intricate but regular branching into a myriad of stable phases that have fivefold
contact points. Such boundary points form a wide parameter lattice as a function of the frequency and amplitude of light absorption. These
findings revise current knowledge about the topology of the control parameter space of a celebrated prototypical example of an oscillating
chemical reaction.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0047167

A version of the oscillatory Belousov–Zhabotinsky reaction cat-
alyzed by ruthenium ion is photosensitive. We report here high-
resolution computational stability diagrams obtained for an
oscillatory perturbation I(t) = a sin(ωt) of this nonlinear system,
recorded in the (ω, a) plane. The calculated oscillatory trajecto-
ries appear with different numbers of spikes in Ru(phen)3+

3 (the
inhibitory species) per period. Trajectories with an equal number
of spikes cluster in certain areas that correlate to a regular adding-
doubling complexification route. The remarkable feature of these
areas is that in multiple cases (a lattice), five distinct areas join
at an exceptional point (ω, a), which we refer to as a quint point.
We conjecture such points to be generic properties observable in
complex oscillatory systems. We expect lattices of quint points to
be detected experimentally.

I. INTRODUCTION

Nonlinear oscillators are well-known generators of intricate
wave patterns.1–5 For instance, stable periodic oscillations may

display phenomena such as doubling and adding cascades. As con-
trol parameters are continuously changed, waveforms often change
by acquiring more and more spikes (local maxima), and it is there-
fore natural to inquire how spikes emerge distributed in phase
diagrams as a function of internal control parameters or external
perturbations. This is a basic and quite difficult question due to the
total absence of a proper theoretical framework to predict analyt-
ically the dynamics of even simple models governed by nonlinear
differential equations. The characterization of the possible wave-
forms produced by nonlinear oscillators is a problem of interest to
all scientific disciplines and applied sciences.

Bifurcation phenomena involving the variation of just a sin-
gle parameter are reasonably well understood.1–5 In contrast, only
fragmentary information is available for situations requiring the
simultaneous variation of two or more independent control param-
eters. The difficulty lies in drawing a plethora of phase bound-
aries delimiting oscillations with distinct waveforms and number
of spikes per period, and in determining phase volume and rela-
tive orientation in phase diagrams. Fortunately, high-performance
high-throughput computer clusters, outperforming by wide margins
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FIG. 1. Frequency–amplitude stability phase diagrams obtained by counting spikes per period of (a) activator x and (b) inhibitor z. Colors represent the number of spikes per
period, as indicated in the colorbar. Black denotes parameters leading to non-periodic (chaotic) oscillations. The first two quint points of the lattice are located at the center
of the circles in (b). The rectangular box is shown magnified in Fig. 2.

everything previously available, allow access to such invaluable
cartographic information about complex systems.

Our aim here is to report the discovery of a wide lattice of
exceptional parameter points, quint points, recorded in the fre-
quency–amplitude control parameter space of a periodically driven
ruthenium-catalyzed Belousov–Zhabotinsky reaction. Each quint
point of the lattice functions as a waveform “access custodian:” start-
ing from any quint point, slight parameter deviations from them
allow one to change, to select, a specific waveform from a set of
five distinct stable patterns that coalesce at the quint point, each
waveform characterized by a different number of spikes per period.
Examples of such quint points and the five phases coalescing on
them may be seen in Figs. 1(b), 2(b), and 2(d). Therefore, oscillations
in nonlinear systems continue to surprise and marvel.

II. THE RUTHENIUM-CATALYZED REACTION

The Belousov–Zhabotinsky (BZ) reaction6 is the prototype of a
chemical reaction governed by a nonlinear dynamic law and exhibits
oscillations in the concentrations of intermediate species. It is the
only chemical system that exhibits sustained, autonomous oscil-
lations in a batch reactor. In the classic BZ reaction, the driving
chemical reaction is the oxidation of malonic acid [CH2(COOH)2]
by a bromate ion (BrO−3 ) in aqueous 1M H2SO4. The direct reaction
between BrO−3 and malonic acid is very slow, and it is typically cat-
alyzed by a redox couple consisting of two metal ions separated by a
single electron, e.g., Ce(III)/Ce(IV) in the classic recipe, or by similar
couples, e.g., Fe(phen)2+

3 / Fe(phen)3+
3 and Ru(phen)2+

3 / Ru(phen)3+
3

with phen ≡ phenanthroline. The Ru-catalyzed system7 is interest-
ing because it can be perturbed via light absorption by Ru(phen)2+

3

to yield the excited species Ru∗(phen)2+
3 , which eventually leads to

the generation of Br−, the species that controls the BZ oscillations.
This photochemically perturbed system is the system studied here.

Field, Körős, and Noyes (FKN)8 described the BZ chemical
mechanism in 1972 as consisting of nine reactions involving eight
intermediates. This mechanism has very largely stood the test of
time.6,9 Field and Noyes10 used rate-determining step approxima-
tions to reduce the FKN mechanism to a system of three variables:
[HBrO2], [Br−], and [Ce(IV)], that together define the dynamic
structure of the BZ reaction. The scaled kinetic equations form the
so-called Oregonator model, namely,

ε
dx

dt
= x(1− x)+ y(q− x),

σ
dy

dt
= ηz− y(q+ x),

dz

dt
= x− z.

(1)

The dimensionless parameters ε, σ , and q contain information
about the rate equations of the five irreversible steps of the reduced
mechanism and the concentrations of malonic acid. Typical values
are σ � ε, q� 1. The time scales of x and y are similar and both
are much faster than z. Thus, it is possible to reduce Eq. (1) to two
variables either by causing x to follow y (set dx/dt = 0) or by causing
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FIG. 2. Marked differences between the spikes of activator x (left column) and of inhibitor z (right column). For reference, circles and points are also added in panels (a)
and (c). (b) The first four quint points, recorded by counting spikes of z, are located at the center of the circles. Quint points are vertices of parabolic arcs. New quint points
emerge at both extremities of every parabolic arc. Numbers refer to the number of spikes of individual phases of periodic oscillations. Black denotes the phases of chaos,
i.e., lack of periodicity. (d) Magnification of the box in (b) showing the next few generations of quint points at the vertices of the parabolas with 13 = 6+ 7 and 15 = 7+ 8
spikes. The generic unfolding is illustrated schematically in Fig. 3. Coordinates of the five points around the larger circle are given in Fig. 4.

y to follow x (set dy/dt = 0). Tyson11 and Tyson and Fife12 showed
that y is a little faster than x (and the result less complex) and set
dy/dt = 0 obtaining thereby y = ηz/(q+ x). The photosensitivity
of the Ru-catalyzed BZ reaction allows an opportunity to investigate

its behavior under external, periodic, light-perturbation I(t) that is
simply added to the activator (autocatalytic, here x) equation, with
little regard to the actual chemistry occurring, following the previ-
ous work by Español and Rotstein13 in this journal. Therefore, after
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simple rescaling z← ηz and t← t/ε, the model becomes

dx

dt
=

1

10

[

x(1− x)+
q− x

q+ x
z+ I(t)

]

, (2)

dz

dt
=

ε

10
(ηx− z), (3)

where I(t) = a sin(ωt) is an external periodic perturbation with
amplitude a and frequency ω.

Following the literature,13 we fix q = 0.1, ε = 0.025, and η = 5
and investigate the dynamics as a function of ω and a.

III. COMPUTING STABILITY DIAGRAMS

A popular tool to explore dynamical systems is the Lya-
punov exponent,14 which is used to sort out periodic from chaotic
oscillations.1,2,4,5 However, the computational cost to obtain Lya-
punov diagrams is relatively high, and their very naive two-phases
classification is far from the maximal possible. Considerably richer
cartographic information is provided by the so-called isospike
diagrams,15–26 which use distinct colors to codify chaos and the
number of spikes (local maxima) per period of the periodic oscil-
lations. In this simple and less costly way, one obtains diagrams
that perfectly reproduce the Lyapunov classification but contain a
significant enhancement: instead of lumping together all periodic
oscillations into a single phase as Lyapunov diagrams do, isospike
diagrams display explicitly the number of spikes of each individual
oscillation. For a survey regarding stability diagrams, see Ref. 19.

The individual stability diagrams in Figs. 1 and 2 cover
parameter windows of interest with grids of 1200× 1200 = 1.44
× 106 equidistant points. For each point, the temporal evolution
of the reaction is computed by integrating numerically Eqs. (2)
and (3) with the standard fourth-order Runge–Kutta algorithm,
using a fixed time step h = 0.02. For each row, integrations start
at the rightmost boundary from an arbitrary initial condition (x, z)
= (0.16, 1.16) and proceed horizontally to the left by following the
attractor, namely, by re-using the last computed values of x and z to
start a new integration after decreasing ω. The first 0.4× 106 inte-
gration steps were discarded as transient time needed to approach
the attractor, with the subsequent 8× 106 steps used to compute up
to 800 extrema (maxima and minima) for both variables, and then
checking whether or not spikes repeated.

IV. A LATTICE OF QUINT POINTS

Figure 1 shows stability diagrams displaying the variation of the
number of spikes per period of activator x and inhibitor z using a 17
color palette. Oscillations with more than 17 spikes are represented
by recycling the 17 basic colors “modulo 17,” namely, by assigning
to them the color index obtained as the remainder of the integer
division of the number of spikes by 17. Here, multiples of 17 are
assigned the index 17. Black is used to represent the lack of numeri-
cally detectable periodicity, “chaos.” From Fig. 1(b), one recognizes
that the spikes of inhibitor z display a rich and regular variation
when the frequency and amplitude of the external oscillating light
beam change.

Figure 2 shows isospike stability diagrams for both variables
x and z in a magnified view of the box in Fig. 1. From Figs. 2(a)
and 2(b), it is easy to recognize the smooth variation of the spikes.
In contrast, on the upper part of Fig. 2(b), there are two large
phases, characterized by periodic oscillations with one and with two
spikes per period, which are separated by a smooth boundary. As a
decreases along this separation boundary, one eventually reaches the
first quint point of the lattice, indicated by the black dot at the center
of a circle. At this quint point, the number of spikes suddenly trifur-
cates producing three new phases. The largest and more easily visible
is a large parabolic-like phase characterized by periodic oscillations
with three spikes, the sum of the spikes of the two phases preced-
ing it: 3 = 1+ 2 spikes. In addition to this parabolic phase, there are
two cuspidal-like phases meeting at the quint point, characterized
by two and four spikes per period. The cuspidal four-spikes phase
fanning out to the right of the quint point is easy to recognize. To
the left of the quint point, there is a two-spikes cuspidal phase that,
however, is too compressed to be identified in the scale of the figure
but may be easily identified on suitable magnifications (not shown
here). This narrow phase fans out to the left of ω = 0.034. It results
from a spikes-doubling transition of the one-spike phase above it.
Analogously, the four-spikes phase is a spikes-doubling transition
of the two-spikes phase immediately above it.

In Fig. 2(b), there is a curious asymmetry for ω decreasing when
one moves leftward from the two-spikes phase on the right: On the
top part of the diagram, there is a decreasing 1← 2 transition, while
an increasing 4← 2 transition occurs on the lower part of the figure.
The rich mosaic of phases in Fig. 2 cannot be discovered from Lya-
punov diagrams because, as already mentioned, such diagrams lump
together all periodic oscillations into a single phase (color), washing
out all the information contained in the spikes of the oscillations.

Figure 2(d), a magnification of the box in Fig. 2(b), shows the
next phase-trifurcation leading to phases with 6, 7, and 8 spikes per
period and two new quint points at the ends of the parabolic phase
of 7 spikes. Such points are located at the center of the circles and,
as before, mark phase trifurcations leading to phases with 12, 13, 14,
15, and 16 spikes, as indicated by different colors. The phases with
12 and 16 spikes result from spikes-doubling transitions from the
phases with 6 and 8 spikes on their right. Analogously, a 14-spikes
phase results from the spikes-doubling of the phase with seven
spikes. However, there are also spikes-adding phases, namely, the
two new parabolic arcs with 13 = 6+ 7 and 15 = 7+ 8 spikes. As
indicated by the colors, such intricate but regular adding-doubling
cascading continues, with subsequent phases getting more and more
difficult to visualize very quickly.

In Fig. 2(d), it is possible to recognize that the several stripes
of periodic oscillations embedded in chaos also show color changes
along them, a clear sign of the presence of regular adding-doubling
complexification cascades in them too. The regular unfolding of the
adding-doubling complexification cascading observed in Fig. 2 is
summarized schematically in Fig. 3.

In hindsight, the differences seen between the stability dia-
grams in Figs. 1(a) and 1(b) or between the two columns in
Fig. 2 should not be totally unexpected. In the same way as a
three-dimensional attractor looks different when represented by
distinct two-dimensional phase-space projections, two-dimensional
parameter sections display distinct aspects of the underlying
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FIG. 3. Schematic representation of the regular adding-doubling complexifica-
tion cascading observed in Fig. 2. All parabolic phases contain phases with odd
number of spikes, while their adjacent phases have even number of spikes. The
adding-doubling complexification cascade is apparently finite and not very long.
Adapted from Ref. 18.

multidimensional control parameter space when inspected with
different dynamical variables.

What happens to the waveform of the oscillations as the
adding-doubling cascade proceeds? The answer is given in Fig. 4
that shows waveforms for x and z at five points marked around
the larger circle in Fig. 2(d). The individual panels of Fig. 4 record
the (a, ω) coordinates of the points, the corresponding period of
the oscillations, as well as the number of spikes of x and z. Small
spike differences are difficult to identify in the scale of Fig. 4 but are
visible in magnifications (not shown). Noteworthy is the fact that
by doubling the period of oscillations seen in the topmost panel,
one obtains 2× 639.670 = 1279.340, which is close to the period
1279.020 recorded for the oscillations in the panel at the bottom. In
contrast, 2× 637.450 = 1274.900 that is not close to any of the other
two periods 1282.940 and 1284.410 in the figure. This emphasizes
the fact that, for any fixed set of parameters, the period measured
using any variable of the model is always the same, independently of
the number of spikes that the variable may have. It also emphasizes
the fact that the phenomena described here are connected with the
discrete variation of the number of spikes, not with the continuous
variation of the period. Thus, inside every parabolic arc, one finds
spike-adding, not period-adding.

V. CONCLUSION

This work reports the discovery of an intricate but reg-
ular adding-doubling complexification cascading in a driven
Belousov–Zhabotinsky reaction. It significantly extends and com-
plements previous findings of Español and Rotstein13 published
in this journal. The complexification cascading is observed in the
frequency–amplitude control plane of the reaction and is summa-
rized schematically in Fig. 3. This regular complexification route
illustrates the unexpected intricacy and beauty of the behavior of

FIG. 4. Temporal evolution of activator x and inhibitor z for the five points dis-
tributed around the circle in Fig. 2(d). The period T varies with amplitude a and
frequency ω, but it is always the same for both x and z.

a periodically perturbed nonlinear system and revises knowledge
about the topology of the control space of a prototypical oscillat-
ing chemical reaction. The predicted model oscillations have not yet
been observed experimentally but are within reach. Furthermore,
we hypothesize the adding-doubling cascading reported here to be
a generic property of complex oscillatory systems, not difficult to
observe experimentally in other contexts.
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