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Chirality observed in a driven ruthenium-
catalyzed Belousov–Zhabotinsky reaction model†

Jason A. C. Gallas ab

Chirality is commonly associated with the spatial geometry of the atoms composing molecules, the

biochemistry of living organisms, and spin properties. In sharp contrast, here we report chirality found in

numerically computed stability diagrams of a chemical reaction governed by purely classical (that is, not

quantum) equations, namely in a photochemically periodically perturbed ruthenium-catalyzed

Belousov–Zhabotinsky reaction model. This novel chirality offers opportunities to explore hitherto

unsuspected properties of purely classical chemical oscillators.

1 Introduction

Asymmetry can be much more eventful than symmetry in disci-
plines involving chemical and biochemical interactions, as well as
optical activity and associated phenomena from the perspective of
molecular scattering of polarized light.1–5 Since the late seventeenth
and early eighteen centuries, peculiar optical activity in exquisite
crystals and liquids was recognized by Huygens, Haüy, Biot, Fresnel,
Pasteur, and others, well before an understanding of the complex
three-dimensional nature of molecules. The concept of dissymmetry
used in 1848 by Pasteur, aged 25, to describe seemingly identical
objects ‘‘which differ only as an image in a mirror from the object
which produces it’’ was replaced by the term chirality, introduced
much later, in 1893, by Lord Kelvin.1–3

Discrepancies between an object and its mirror image,
chirality, may be easily recognized in macroscopic objects, like
hands and gloves, feet and shoes, scissors, screws, etc.
However, the most alluring consequences of chirality known
today are by far those arising from the quantum realm, asso-
ciated with the spatial geometry of the atoms composing
molecules.

Molecules are ruled by electromagnetic forces, which do not
distinguish left from right. Remarkably, with very few excep-
tions, living organisms use almost exclusively L-amino acids
and D-sugars in their biochemistry.6 Therefore, there seems to
be some hidden mechanism enforcing life to be homochiral (to
prefer one handedness over the other). Manifestly, it is by no

means clear why life on Earth should prefer homochirality,
despite ample evidence to this effect.7–11

In general, chirality appears mostly in the quantum domain,
connected with subtle properties of particle spin, violation of
parity operators, and the electroweak interaction.12 The weak
interaction is chiral and thus provides means for exploring
chirality in a plethora of enticing situations.1 The fact that all
the aforementioned applications belong to the quantum realm
pose a very natural question: is it possible to identify chirality
outside the quantum domain, in phenomena governed by
purely classical (that is, not quantum) equations?

The aim of this paper is to report the observation of chiral
structures, enantiomers, generated by purely classical (that is,
not quantum) equations, namely in the complex but regular
way that spikes (i.e. local maxima) of periodic oscillations
organize themselves when control parameters are continuously
varied in a model of a photochemically periodically perturbed
ruthenium-catalyzed Belousov–Zhabotinsky reaction.13,14

Currently, the availability of high-performance computers,
combined with efficient and reliable numerical methods,
allows computing stability charts summarizing with unprece-
dented detail the individual behavior of millions of chemical
reactions, each one governed by different control
parameters.15–20 As shown below in Fig. 1, 2 and 4, such charts
expose remarkable and unanticipated chiral patterns created in
phase diagrams by large sets of oscillations with varying wave-
forms when control parameters are tuned continuously.

It is important to mention at the outset that the chiral
patterns reported here are obtained from computer simula-
tions, because they cannot be predicted theoretically due to the
total absence of an adequate framework to solve analytically
systems of coupled nonlinear differential equations. As
described below, chiral patterns emerge as a property of
millions of chemical oscillations. Fortunately, however, the
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chirality of the Belousov–Zhabotinsky reaction may be validated
experimentally, as described in the last paragraph of Section 4.

2 Ruthenium-catalized BZ reaction

The Belousov–Zhabotinsky (BZ) reaction has a rich and distin-
guished history.21–23 It is the prototype of a chemical reaction
governed by a nonlinear dynamic law and exhibiting oscilla-
tions in the concentrations of intermediate species. In the
classic BZ reaction the driving chemical reaction is the oxida-
tion of malonic acid (CH2(COOH)2) by bromate ion (BrO3

�) in
aqueous 1 M H2SO4. The direct reaction between BrO3

� and
malonic acid is very slow, and it is typically catalyzed by a redox

couple consisting of two metal ions separated by a single
electron, e.g., Ce(III)/Ce(IV) in the classic recipe, or by similar
couples, e.g., Fe(phen)3

2+/Fe(phen)3
3+ and Ru(phen)3

2+/
Ru(phen)3

3+ with phen � phenanthroline. The Ru-catalyzed
system24–26 is interesting because it can be perturbed via light
absorption by Ru(phen)3

2+ to yield the excited species
Ru*(phen)3

2+, which eventually leads to generation of Br�, the
species that controls the BZ oscillations. This photochemically
perturbed system is the object of our investigation.

Field, Körös and Noyes (FKN)27 described in 1972 the BZ
chemical mechanism as consisting of nine reactions involving
eight intermediates.13 This mechanism has very largely stood
the test of time.21,28 Field and Noyes29 used rate-determining
step approximations to reduce the FKN mechanism to a system

Fig. 1 Frequency-amplitude stability diagrams displaying rings with longitudinally single (left column) or bicolored (right column) paths, obtained by
counting spikes per period of the activator x (left column) and the inhibitor z (right column) of the driven Belousov–Zhabotinsky reaction. Top row: Main
views of the control space. The circle in panel (b) highlights the region containing the quint points discussed in ref. 13. Center row: (c) and (d) Show
magnifications of the black boxes in (a) and (b), respectively. Bottom row: (e) and (f) show magnifications of the boxes in (c) and (d), respectively, showing
sequences of concentric rings extending as far as the eye can see. Colors represent the number of spikes per period as indicated by the common
colorbar at the bottom. Black denotes parameters leading to non-periodic (chaotic) oscillations. In panel (f), the pair of white boxes indicates where
color-mediating chiral transitions are located. These boxes are shown magnified in Fig. 2. Each panel of this figure displays the analysis of individual
oscillations for grids with 1200 � 1200 = 1.44 � 106 equally spaced parameter points.

Paper PCCP



25722 |  Phys. Chem. Chem. Phys., 2021, 23, 25720–25726 This journal is © the Owner Societies 2021

of three variables: [HBrO2], [Br�] and [Ce(IV)], that together
define the dynamic structure of the BZ reaction. The scaled
kinetic equations form the so-called Oregonator model, namely

e
dx

dt
¼ xð1� xÞ þ yðq� xÞ;

s
dy

dt
¼ Zz� yðqþ xÞ;

dz

dt
¼ x� z:

(1)

The dimensionless parameters e, s and q contain informa-
tion about the rate equations of the five irreversible steps of the
reduced mechanism and the concentrations of malonic acid.
Typical values are s { e, q { 1. The time scales of x and y are
similar and both much faster than z. Thus it is possible to
reduce eqn (1) to two variables either by causing x to follow y
(set dx/dt = 0) or by causing y to follow x (set dy/dt = 0). Tyson30

and Tyson and Fife31 showed that y is a little faster than x (and
the result less complex) and set dy/dt = 0 obtaining thereby
y = Zz/(q + x). The photosensitivity of the Ru-catalyzed BZ
reaction allows an opportunity to investigate its behavior under
external, periodic, light-perturbation I(t) that is simply added to
the activator (autocatalytic, here x) equation with little regard to
the actual chemistry occurring. Therefore, after simple rescal-
ing z ’ Zz and t ’ t/e the model becomes,13,14

dx

dt
¼ 1

10
xð1� xÞ þ q� x

qþ x
zþ IðtÞ

� �
; (2)

dz

dt
¼ e

10
ðZx� zÞ; (3)

where I(t) = a sin(ot) is an external periodic perturbation with
frequency o and amplitude a. Following the literature,13,14 we
fix q = 0.1, e = 0.025, and Z = 5, and investigate the dynamics as a
function of o and a.

3 Computational details

To characterize the stability of the distinct oscillatory phases of
the BZ reaction, we compute the so-called isospike
diagrams.15,16,20 Briefly, we select o � a windows of interest
and cover them with discrete grids containing N � N equidi-
stant points. For each point of such grids, the temporal evolu-
tion of the reaction is determined numerically by solving
eqn (2) and (3) similarly as done in ref. 13, namely using the
standard fourth-order Runge–Kutta algorithm with a fixed
time-step 0.002, starting from the arbitrary initial condition
(x, z) = (0.16, 1.6) and following the attractor16,20 horizontally
from left to right.

For each point (o, a) on the grid we determined whether or
not the spikes (local maxima) of x and z repeated, recording
with suitable colors the number of spikes per period for
periodic oscillations, and with black those oscillations found
to be nonperiodic (chaotic). In this simple and computationally
efficient way one obtains the the so-called isospike

Fig. 2 Magnifications of the two possible enantiomers (mirror-images of the adding-doubling spikes walls) that guarantee the correct continuity of the
phases needed to form rings, i.e. closed loops, in the control plane of the inhibitor z seen in Fig. 1(f). Numbers refer to the number of spikes per period of
the individual phases. (a) A-cascade: the number of spikes grows anticlockwise. (b) C-cascade: the number of spikes grows clockwise. Black dots mark
the first quint point13 of a lattice of boundary points where five distinct stability phases with different number of spikes meet. White boxes show that color
changes spill over well into the phase of chaos. The box in panel (b) is magnified in Fig. 4. Panels show the analysis of 1200 � 1200 = 1.44 � 106 equally
spaced parameter points.
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diagrams,15–17,20 depicting parameter domains characterized
by oscillations which share a common number of spikes. Such
diagrams reproduce the content of standard Lyapunov classifi-
cation but with a significant advantage: instead of lumping
together all periodic oscillations into just a single large phase
as Lyapunov diagrams do, isospike diagrams display directly
the number of spikes of the individual oscillations for every
grid point o � a. Therefore, isospike diagrams allow one to
immediately visualize how the number of spikes evolves as a
function of the frequency o and amplitude a of the
external drive.

By selecting sufficiently fine grids of points, the discrete
stability diagrams look visually continuous. Here we use grids
displaying the analysis of reactions over o � a parameter sets
containing 1200 � 1200 = 1.44 � 106 equidistant points. The
panels composing Fig. 1 and 2 are examples of some of the
isospike diagrams obtained. Clearly, the quality of the final
diagrams, as well as the computational work needed to obtain
them, depends sensitively on the number of points used for the
grids. High resolution diagrams are usually computationally
very demanding to obtain. For detailed surveys on the compu-
tation of stability diagrams see ref. 15 and16.

4 Chiral rings

Fig. 1 shows stability diagrams displaying successive magnifi-
cations computed for the driven Belousov–Zhabotinsky reac-
tion of eqn (2) and (3). The left column shows diagrams
obtained by counting spikes per period of the activator x, while
the right column shows the corresponding diagrams for the
inhibitor z. Colors are used to represent phases characterized
by periodic oscillations while black marks parameters for
which non-periodic (chaotic) oscillations are found.

Similarly to familiar differences observed when attractors
are projected in distinct phase-space planes, the stability dia-
grams of Fig. 1 display different aspects of the multidimen-
sional control space when inspected by counting spikes with
distinct variables of the system. However, although the number
of spikes per period may differ for distinct variables, the
oscillation period measured is always the same, as it should
be, independently of the variable used to determine it. Mani-
festly, pairs of stability diagrams in Fig. 1 have distinct bound-
aries among phases of periodic oscillations. Although the
shape and extension of the global periodic phases clearly agree
for both variables, the number of spikes of individual phases is
seen to depend significantly on the variable used to determine
them. As already mentioned, this is the important feature of
isospike diagrams.

The pair of diagrams on the top row of Fig. 1 show extended
windows of the control space. The region inside the circle in
panel (b) displays a lattice of quint points,13 namely points
where five stable phases of oscillation with different numbers
of spikes per period meet. The windows of interest here are
indicated by the black boxes in Fig. 1(a) and (b). Such boxes are
magnified in Fig. 1(c) and (d). In these panels it is possible to

identify a series of concentric ovals, closed parameter circuits,
some of them rather thin in the scale of these figures. The white
box at the center of panels 1(c) and 1(d) contains ticker rings,
magnified in Fig. 1(e) and 1(f). Longitudinally, the adjacent
rings in panel 1(e) display just a single color, thereby character-
izing periodic oscillations with the same number of spikes per
period along the whole circuits. In sharp contrast, the circuits
in panel 1(f) display two colors, indicating that the number of
spikes changes when circulating along them. These color
changes occur for the thiner rings seen in both Fig. 1(e) and
1(f): along the circuits, colors may either change, as in panel (f),
or not, as in panel (e). Of interest here are color changes which
occur longintudinally along rings of periodic oscillations, like
in Fig. 1(d) and 1(f).

Fig. 2 shows in greater detail how colors (i.e. the number of
spikes per period) change longitudinally inside the pair of
small white boxes seen in Fig. 1(f). It is natural to think that
colors could have changed in a simple way, as it occurs
transversally in Fig. 1(e). And, as may be seen in both panels
of Fig. 2, this is what indeed happens between the phases
changing from 4 to 5 spikes per period. However, in the next
level 8 - 9 - 10, colors change longitudinally in a rather
exquisite and intricate way. In the next level, namely 16 -

17 - 18 - 19 - 20, the number of spikes per period changes
in an analogous way, revealing a regular pattern. This regular
growth of the number of spikes repeats in the next levels,
although it becomes more and more difficult to identify such
changes on the scale of these panels. Thus, one sees that the
most prominent color stripes of the ‘‘external’’ spikes-doubling
cascades 4 � 2n and 5 � 2n visible in Fig. 1(f) are mediated by
complex but regular adding-doubling spikes structures which,
for simplicity, we refer to as ‘‘walls’’ of spikes. These very
localized color walls mediate color changes along rings and
filaments in control space.

A cursory comparison of the walls seen in Fig. 2(a) and (b)
may give the impression that their spikes unfolding coincide,
but this is not the case. These walls are very distinct from each
other, forming a regular and artfully asymmetric chiral pair,
each one involving identical combinations of adding and
doubling cascades of spikes but arranged in a distinct order.
To see this, compare the phases u = 4 and v = 5 where the
transversal cascades u � 2n and v � 2n forming the bicolored
outer rings start in Fig. 1(f). While in Fig. 2(a) the number of
spikes increase anticlockwise, in Fig. 2(b) they clearly increase
clockwise. The same happens for the next level of stripes,
namely 8 - 9 - 10, and so on.

Fig. 3 summarizes schematically the first few levels of spikes
unfolding present in Fig. 2. Manifestly, from Fig. 3 it is not
difficult to realize that the two walls turn out to be chiral images
when reflected on the schematic mirror that separates them.
A remarkable feature of the chiral structures generated by the
Belousov–Zhabotinsky reaction is that they arise from a
self-organization of many oscillations of the reaction, not from
a property of any isolated oscillation. To see them, one
needs to tune two independent control parameters of the
reaction.
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Fig. 4 shows that the color changes are not restricted to the
initial cascading of periodic oscillations of the BZ reaction, but
that extend well into the periodic phases interspersed inside
the phases of chaos, or sandwiched with them. Furthermore,
Fig. 4 also show that, mutatis mutandis, the cascading illu-
strated in Fig. 3 is also present in all the smaller and smaller
periodic phases, windows, embedded in chaos.

How could one experimentally measure chiral structures in
the driven Belousov-Zhabotinsky reaction? One possibility is to
record experimental stability diagrams analogous to the ones in
Fig. 1, 2, and 4. An analogous experimental recording was done
before for an electronic circuit.32 However, this procedure is
anticipated to be a challenging task due mainly to the necessity
of maintaining the reaction constant over long periods of time
and, simultaneously, having the ability to discriminate small
spikes differences. Fortunately, a much simpler way to measure
BZ chirality is suggested by the sequences of numbers which
represent the spikes distributions in Fig. 2 and 4. Since one
now knows what to expect from the spikes distributions, it is
enough to just record and compare the temporal evolution of
the spikes of the inhibitor z for parameter points located inside
adjacent windows like, for instance, 4 - 5, or 8 - 9 - 10 or
even in the longer and more elusive chaos embedded series
12 - 13 - 14 - 15 seen in Fig. 4, and similar ones.
Comparing such simple temporal signals can identify unan-
biguously BZ chirality.

5 Conclusions and outlook

As schematically summarized in Fig. 3, this paper reports the
observation of adding-doubling chiral walls of spikes in the
frequency versus amplitude parameter plane of a driven Belou-
sov–Zhabotinsky reaction described by eqn (2) and (3). Spikes
walls are found along certain closed parameter loops. They
mediate families of stable oscillations with different number of
spikes (local maxima) per period. Chiral walls are seen while
recording how the number of spikes of the oscillations evolve
when the control parameters of the purely classical equations
are varied. In other words, this chirality is not related to
standard chiralities of quantum origin.

The chiral structures reported here can be observed only
through either computer simulations or experimental work.
The reason for this is that chirality is difficult, not to say
impossible, to establish theoretically due to the total absence
of any adequate framework to obtain analytical solutions for

Fig. 3 Schematic representations of the two types of chiral walls that bridge ring segments characterized by different numbers of spikes, indicated by
the numbers. When moving along a ring, like in Fig. 1(f), the number of spikes may increase either clockwise or anticlockwise. The number of spikes of the
parabolic-like arcs is always odd, given by the sum of the two phases with the smallest number of spikes that meet at quint points,13 vertex of the
parabolas. For instance, 9 = 4 + 5, 17 = 8 + 9, etc. The chiral walls involve simultaneous combinations of adding and doubling spikes cascades19.

Fig. 4 Magnification of the white box seen in Fig. 2(b) showing that the
clockwise oriented walls of inhibitor z-spikes spillover into the stripes of
periodic oscillations embedded in the black phase of chaos, causing them
to be multicolored, namelyreflecting their varying number of spikes.
Numbers refer to the number of spikes per period of z. The number of
walls increase as stripes get thiner and thiner and the number of spikes
simultaneously increases. A similar spillover occurs for anticlockwise
oriented walls as seen, e.g., in the white box in Fig. 2(a). Resolution:
1200 � 1200 = 1.44 � 106 equally spaced parameter points.
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systems of nonlinearly coupled differential equations over
arbitrary parameter ranges. Fortunately, as described, the chir-
ality of the BZ reaction is clearly accessible to experimental
validation.

From an applied point of view, the existence of chirality in
the BZ reaction is a most surprising phenomenon. This chir-
ality revises current knowledge about the intricate topology of
the control space of a BZ reaction, a prototypic model of a
chemical oscillator, and offers opportunities to investigate
hitherto unsuspected properties and the whys and wherefores
of analogous reactions governed by classical (that is, not
quantum) equations. For instance, the unfolding of the dual
wall pairs in Fig. 2 and 3 is found to depend exclusively on the
relative magnitude of the integers u = 4 and v = 5 where the
walls start. A challenging question is to understand the under-
lying dynamical mechanisms leading to the formation of the
walls and the selection of either u o v or u 4 v, as well as to the
observed order A, C or C, A of the walls spread along rings and
filaments.

Finally, we briefly mention that we observed chirality very
recently in another rather distinct system governed by classical
equations, namely in Hartley’s electronic circuit33, involving a
rather distinct and autonomous (i.e. time independent) system.
Further promising systems with classical equations and likely
to display classical chirality are systems displaying rings34 and
the so-called ‘‘eyes of chaos’’, e.g., in the periodically driven
Brusselator,35 in a rotor system with oil-film force,36 in an
electronic circuit based on the startling memristor element,37

and possibly in other applications.38,39 Consequently, we expect
chirality generated by classical equations to be a generic
property of a wide class of systems and to underly interesting
novel applications that remain to be discovered.
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