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Abstract
We report the discovery of non-quantum chirality in the a periodically driven Brusselator. In
contrast to standard chirality from quantum contexts, this novel type of chirality is governed
by rate equations, namely by purely classical equations of motion. The Brusselator chirality
was found by computing high-resolution phase diagrams depicting the number of spikes, local
maxima, observed in stable periodic oscillations of the Brusselator as a function of the
frequency and amplitude of the external drive. We also discuss how to experimentally observe
non-quantum chirality in generic oscillators governed by nonlinear sets of rate equations.
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1. Background

A recent work reported the observation of chiral structures
of non-quantum origin in the dynamics of an autonomous,
that is time independent, electronic circuit, Hartley’s oscilla-
tor, involving a solid-state component, namely a junction-gate
field-effect transistor, and a tapped coil [1]. Such remarkable
structures were observed in phase diagrams displaying how
the number of spikes of stable periodic oscillations changed
when parameters of the circuit are tuned along certain closed
parameter paths, rings, in the control parameter space of the
circuit.

The observation of such chiral structures is significant
because the electronic circuit is governed by purely classi-
cal (that is, not quantum) equations of motion. As it is well-
known, chirality is a familiar property commonly associated
with quantum phenomena, in particular with the spatial ori-
entation of the atoms in molecules, the biochemistry of living
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organisms, and spin properties [2–11]. In other words, the chi-
rality recorded for the electronic circuit is of a radically distinct
nature, produced by properties which are not at all associated
with quantum phenomena.

So far, there are only two known examples of dynam-
ical systems displaying non-quantum chirality. First, the
aforementioned electronic oscillator of Hartley [1]. Second,
a photochemically driven ruthenium-catalyzed Belousov–
Zhabotinsky reaction model [12]. These two instantiations of
non-quantum chirality have a rather distinct physical nature,
electronic and physico-chemical. Furthermore, the mathemat-
ical nature of equation of motions underlying both phenomena
is also conspicuously different: the electronic circuit is gov-
erned by an autonomous equations while the chemical reaction
model involves a non-autonomous equations.

A common feature shared by both examples is the fact that
non-quantum chirality was observed along certain parameter
rings [13] in phase diagrams, namely along closed parame-
ter paths in the control space of the oscillators. Along such
rings, oscillation stability thrives even in the presence of small
parameter fluctuations. The presence of rings in both examples
immediately draws attention to the possibility of observing
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chiral structures in other complex oscillators displaying rings
in the control space.

In hindsight, it is now possible to identify parameter rings
in the ‘eye of chaos’ reported in 2015 for a driven Brussela-
tor [14, 15]. Subsequently, eye of chaos were also observed
in a nine-dimensional non-autonomous model of a cracked
rotor with oil-film force [16] and, more recently, among the
mixed-mode oscillations of a four-dimensional autonomous
memristor-based Shinriki’s electronic circuit [17]. As illus-
trated in figure 1, the eye of chaos is a sort of ellipsoidal-
like region characterized mainly by chaotic oscillations,
surrounded by phases of stable periodic oscillations. In its
inner, the phase of chaotic oscillations contains rings of peri-
odic oscillations embedded in them.

The aim of this paper is to report the presence of non-
quantum chirality in the self-organization of complex oscil-
lations of the driven Brusselator, as described in section 2.
This discovery was only possible thanks to combination
of three decisive factors: (i) high-performance computing,
(ii) reliable numerical methods and, most importantly, (iii) the
use of isospike diagrams, a decade-old technique of represent-
ing system stability by counting the number of spikes, i.e. the
local maxima, present for every periodic trajectories of the sys-
tem. This technique is reviewed in section 3. After that, the
non-quantum chirality observed in the driven Brusselator is
described. Points (i) and (ii) are important because, as dis-
cussed in detail below, non-quantum chirality emerges only
when plotting phase diagrams like figures 1, 2, and 4 below,
which display how the number of spikes of millions of indi-
vidual oscillators self-organize when pairs of control parame-
ters evolve simultaneously. Such diagrams require relying on
fast, efficient and tested numerics [18] over extended parame-
ter intervals, a well-suited task for modern high-performance
computer clusters.

2. The driven Brusselator

Complex oscillations in chemical reactions have a long and
curious history. Although occasionally reported since at least
the early 1800s [19–24], skepticism regarding claims about the
existence of chemical oscillations persisted among chemists
until well into the 1950s as described, e.g., in the book of
Epstein and Pojman [25]. These authors describe the situa-
tion citing a 1972 paper of the Danish biochemist Degn [26]:
‘although there now seems to be abundant evidence for the
existence of homogeneous oscillating reactions, there are still
theoreticians who resist the idea, and also a few experimental-
ists think that alleged homogeneous oscillations are caused by
dust particles, although nobody has explained how’.

In pioneering works done in 1910–1920, Lotka [27–31]
considered theoretically the problem of chemical oscillations.
He was able to derive equations which produced sustained
oscillations [31, 32]. However, his equations produced oscilla-
tions for any values of the control parameters, something not
observed in the chemical laboratory. The damped oscillations
predicted by Lotka to be possible in open systems, where a
reactant which enters at a constant rate is consumed by an
autocatalytic reaction, were observed experimentally by Degn

[33]. Lotka’s model was subsequently generalized and applied
by Selkov and Betz to explain the mechanism of glycolytic
self-oscillations [34].

The undriven Brusselator, introduced by Prigogine and
co-workers [35, 36], is an important chemical reaction
model that was critical to demonstrate the existence of homo-
geneous oscillations and propagation of waves in chemi-
cal reactions. The Brusselator model is interesting in many
respects [37]. For his contributions to the study of nonequi-
librium systems, Prigogine received the 1977 Nobel Prize in
Chemistry [25, 37].

In 1977, Tomita et al [38] introduced a forcing term of the
form a cos(ωt) in the Brusselator, studying the equations

dX
dt

= A − (B + 1)X + YX2 + a cos(ωt), (1)

dY
dt

= BX − YX2, (2)

where a and ω are freely tunable parameters of the exter-
nal drive, and A and B are internal parameters. Initially, the
main concern was to determine the extension of the regions
of entrainment and their stability. The limits of entrainment
were estimated with Floquet exponents and compared with
results from numerical simulations. In the absence of forc-
ing, limit cycle behavior exists when B > A2 + 1 [39, 40].
The Brusselator is a very useful model to explore dynamics
in mass-action kinetic systems. It shows what the possibil-
ities are, e.g., oscillations, excitability, chaos, multistability,
pattern-formation, etc.

Among other things, Tomita et al [38] reported finding
multistability, namely coexistence of two distinct stable oscil-
lations, for (A, B, a,ω) = (0.4, 1.2, 0.0018, 0.34). Incidentally,
multistability as well as the aforementioned eye of chaos
were recently rediscovered once again in the Brusselator
[41]. Here, following Tomita et al [38], we fix A = 0.4 and
B = 1.2 and compute high-resolution phase diagrams display-
ing how oscillations evolve when tuning the frequency ω and
amplitude a of the external drive. For a recent detailed sur-
vey regarding the history of the driven Brusselator see the
invited review chapter in reference [14], reprinted in refer-
ence [15], a book commemorating the 80 years of Prof. Hao
Bailin [42].

Before moving on, some words about the origin of the name
Brusselator, introduced by Tyson about 50 years ago [39, 40]. I
am grateful to him for the following interesting little historical
piece [43]:

‘As a graduate student in chemical physics at the Uni-
versity of Chicago (in 1970), I read the 1968 paper by
Prigogine & Lefever in J. Chem. Phys.. After referring
to it for some months as the ‘Prigogine–Lefever’ model,
I had the idea to start calling it the ‘Brusselator’, making
a rather obvious pun. I introduced the term in my first
paper on the subject of chemical oscillations [39].

I was told later that Prigogine, at first, thought this
cheeky little grad student was making fun of him, but
his colleagues convinced him that it was good publicity
for the model. Which it proved to be’.
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Figure 1. Four distinct ways of representing the nature of stable oscillations of the driven Brusselator. (a) Standard diagram of Lyapunov
exponents, with colors representing chaos (positive exponents) and dark shadings representing periodicity (negative exponents). (b) Period
length of the oscillations. Black denotes non-periodic oscillations. (c) Isospike diagram showing the number of spikes per period of the X
oscillations. (d) Isospike diagram for the Y oscillations. In (c) and (d), black denotes non-periodic oscillations. White boxes mark the eye of
chaos [14, 15]. Although (c) and (d) look rather distinct, only the inner spikes distribution depends on the variable used to determine the
spikes, not the boundaries between periodic and chaotic oscillations. Individual panels display the analysis of 1200 × 1200 = 1.44 × 106

parameter points.

3. The power of counting spikes

The study of regular and irregular trajectories defined by
sets of coupled ordinary differential equations essentially
amounts to the study of specific quantities associated with the
temporal evolution of numerically obtained solutions of the
equations. Nowadays, perhaps the most popular tool to explore
complex dynamics are the Lyapunov exponents, bounds for the
exponential growth rates of the solutions [44]. Lyapunov expo-
nents are essentially mean-field quantities which characterize
the rate of separation of the components of initially very close
solutions of the equations of motion [45, 46]. For a given set
of control parameters, the Lyapunov exponent discriminates
regular (negative exponents) and irregular (positive exponents)
solutions.

The computation of Lyapunov exponents, topological
entropies, and similar quantities derived from solutions of the
equations of motion is a rather computer demanding task.
Moreover, phase diagrams based on Lyapunov exponents pro-
vide no more than just a black-and-white two-color subdivi-
sion of the physical control parameter space. But, would it be
possible to bypass the expensive computational hurdles while
still obtaining reliable two-color diagrams? Or, much better,
would it be possible to get more informative phase diagrams
with a minimal computational effort? The answer to both

questions is affirmative, and the way to do it is to use so-called
isospike diagrams [47–57], which we now briefly explain.

The minimal information needed to construct phase dia-
grams of any type are the solutions of the equations of motion.
By simply detecting trajectories that are periodic one may
effectively produce black-and-white diagrams of the control
parameter space and, therefore, separate periodic from non-
periodic trajectories. A simple way to detect if trajectories
are periodic or not is by recording the sequence of local
maxima, spikes, of the trajectories and then checking if the
spikes repeat. Visually, diagrams obtained by discriminating
periodic from non-periodic trajectories are basically indis-
tinguishable from analogous diagrams obtained through the
expensive calculation of Lyapunov exponents. Lyapunov dia-
grams are very effective to detect lack of periodicity, while
the alternative diagrams based on spikes are very effective
to detect periodicity. They both provide divisions into two
complementary groups, without discriminating any eventual
fine structure of such groups. Clearly, when dealing with
periodic oscillations, diagrams based on counting local max-
ima, spikes, are equivalent to diagrams based on counting local
minima.

How to get more informative phase diagrams when detect-
ing periodicity by counting spikes? Here is a simple answer:
instead of using just a single color to bunch together all
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Figure 2. (a) Magnification of box in figure 1(d), illustrating the eye of chaos and chiral structures obtained when counting spikes of Y .
Numbers refer to the number of spikes per period of each phase. Boxes A, B and C contain details of the chiral patterns, magnified in the
other panels. (b) Magnification of box A in panel (a) showing the 4–5 clockwise oriented chiral pattern. At the circle center there is a quint
point [57], where five distinct stability phases meet. The temporal evolutions for parameters indicated by dots are presented in figure 4.
(c) Magnification of box B showing a clockwise oriented chiral pattern, with a quint point indicated by the dot. (d) Magnification of box C
showing an anticlockwise oriented chiral pattern, with a quint point indicated by the dot. The set of quint points form a lattice [57].

parameters which lead to periodic trajectories, one may use
distinct colors to record the specific number of spikes per
period of each individual trajectory. Such diagrams are the
so-called isospike diagrams [47–57]. Figures 1(c) and (d)
provide examples of isospike diagrams, obtained by count-
ing spikes per period of the periodic oscillations of X and Y,
respectively. Analogous to what happens for the Lyapunov dia-
gram in figure 1(a) or the diagram based on the period length
in figure 1(b), isospike diagrams do not discriminate chaos
from quasiperiodicity. Since the number of spikes per period
may grow very fast in specific regions of the control parameter
space, it is convenient to ‘recycle colors’ i.e. to plot the num-
ber of spikes modulo some convenient integer. For instance, in
figures 1(c) and (d) we recycle colors modulo 19.

For each point (ω, a) on the grid we determined whether
or not the spikes of X and Y repeated, recording the num-
ber of spikes per period for the periodic oscillations, and
with black the non-periodic oscillations. In this way we
obtain phase diagrams showing parameter domains character-
ized by oscillations which share the same number of spikes.
Such diagrams allow one to visualize directly how the num-
ber of spikes evolves when the frequency ω and amplitude a
are varied. The phase diagrams in figures 1 and 2 are exam-
ples of the diagrams obtained. Clearly, the quality of the final
diagrams (and the computational work needed to obtain them)
depends of the number of points used in the grids. High reso-
lution diagrams are normally very demanding computational

tasks. For a detailed survey on the computation of stability
diagrams see reference [55].

Briefly, our isospike stability diagrams are computed as
follows. A given ω × a window of interest is covered with
a mesh of 1200 × 1200 equidistant points. For each point
of the mesh, the temporal evolution of the Brusselator is
obtained numerically by solving equations (1) and (2) with
a standard fourth-order Runge–Kutta algorithm with fixed
time-step 0.001. Integrations are started from an arbitrar-
ily selected initial condition (x, z) = (0.16, 1.16) and proceed
by following the attractor [55–57] horizontally from left to
right.

4. Results and discussion

Figure 1 shows four diagrams comparing distinct ways of
representing the nature of stable oscillations in a frequency-
amplitude diagram for the driven Brusselator, equations (1)
and (2). This figure compares the classification of the motions
using diagrams of Lyapunov exponents, figure 1(a), and period
length, figure 1(b), with isospike diagrams for X, figure 1(c),
and for Y, figure 1(d). From this figure one clearly sees that the
isospike diagrams are much more informative than the other
two diagrams. All four diagrams reveal unambiguously the eye
of chaos and the associated rings inside and outside the phase
defined by chaotic oscillations.

4



J. Phys.: Condens. Matter 34 (2022) 144002 J A C Gallas

Figures 1(c) and (d) display rather distinct inner distribu-
tion and phase boundaries corresponding to periodic oscil-
lations with different number of spikes. In other words,
periodic phases look different when inspected by counting
spikes with distinct independent variables of the system. How-
ever, these differences are similar to the familiar differences
observed when attractors are observed in distinct phase-space
projections. Manifestly, although the number of spikes per
period may differ among distinct variables, the oscillation
period measured is always the same, independently of the
variable used to determine it.

Figure 2(a) is a magnification of the white box in
figure 1(d), showing a more detailed view of the eye of chaos,
the black region characterized by non-periodic (chaotic) oscil-
lations. The outer ring of the eye is a domain of parame-
ters characterized by oscillations having one spike per period.
Moving farther inward there is a parameter ring of oscilla-
tions with two spikes per period. Then, a region with three
spikes in the upper right part, and a region with four spikes
in the bottom left part. A detailed view of the complex but
regular spikes unfolding inside box A is shown in figure 2(b).
The three-spikes region gets smaller and smaller as one moves
toward smaller values of ω and a, eventually disappearing
in specific exceptional points located inside boxes B and C.
The two exceptional points were the wedge-like region of
three spikes disappears are indicated by black dots in panels
(c) and (d). There are many such exceptional points in
figure 2(a) and it is easier to understand their meaning by
referring to figure 2(b).

The center of the circle in figure 2(b) also contains an
analogous exceptional point, a quint point [57] where five
distinct stability phases meet. Two phases arise from spikes
doublings of phases having four and five spikes. But there is
also a parabolic-like phase which arises from spikes adding
of two other phases having four and five spikes. All these
five phases meet at the center of the circle, the exceptional
quint point. Analogously, the points indicated by black dots
in figures 2(c) and (d) are also quint points. The five phases
meeting in figure 2(c) are the larger and easily visible phases
characterized by two, three, and five spikes, as well as by two
additional thin wedge-like phases of four and six spikes. In
figure 2(c), the five spikes phase is a stretched parabola-like
analogous to the nine spikes phase in figure 2(b). Similarly, in
figure 2(d) the five phase meeting at the quint point are phases
with two, three, four, five, and six spikes.

The most remarkable feature in the panels of figure 2 is the
relative orientation of the spikes unfolding.While in figure 2(c)
the unfolding proceeds clockwise as 2 → 3 and 4 → 5 → 6
etc, in figure 2(d) one sees the opposite situation, namely an
anticlockwise unfolding 3 → 2, then 6 → 5 → 4, etc.

Figure 3 shows a schematic representation of the first three
levels of the clockwise and anticlockwise chiral unfolding seen
in figure 2. After a first phase trifurcation, one finds parabolic-
shaped phases resulting from oscillations with an odd number
of spikes per period, while its adjacent phases have even num-
ber of spikes. Clearly, the vertex of each parabola is the meet-
ing point of five distinct phases meet, a quint point [57]. Appar-
ently, the cascading involves just a finite number of steps and

Figure 3. Schematic representation of the first three levels of the
clockwise and anticlockwise chiral unfoldings present in figure 2.
The cascading has apparently just a finite number of levels and is
not very long.

is not particularly long. The two enantiomers seen in figures 2
and 3 form the pair of chiral structures of the Brusselator,
and are the main result of this paper. In systems where the
cascades forming the enantiomers are found isolated, not form-
ing chiral pairs, the parabolic arcs in figure 3 may overlap [58].
They may also emerge strongly distorted as, for instance, in
figure 2.

A minimalist flow particularly suited to investigate the inner
details of the cascadings sketched in figure 3 can be obtained
by properly linearly shifting variables of a simple quadratic
function as follows [59]:

ẋ = y, ẏ = z, ż = −a − y − bz + x2, (3)

where a and b are freely tunable parameters. The very small
number of mathematical operations in equation (3) quite sig-
nificantly reduces the computational workflow. Theoretical
phase diagrams and experimental evidence of quint points and
non-quantum chirality for the flow in equation (3) are reported
elsewhere [60].

Figure 4 displays the temporal evolution of X and Y for
the six representative points indicated in the panels on the
top row. The leftmost top panel is shown to contrast the dif-
ferences observed between spikes of X and Y . As mentioned
above, such differences correspond to the familiar differences
seen when attractors are projected into distinct phase-space
planes. In the six subsequent panels of figure 2, the upper trace
shows the time evolution of Y , while the lower trace shows X.
The ratios nX/nY refer to the number of spikes found in the
X and Y variables, respectively, while T gives the period of
the oscillations. Small dots where added to some spikes to
help visualize the spikes which belong to a period. Although
there are some comparatively small spikes, they are clearly
measurable. In particular, note that series with even number
of spikes display more subtle variations of the local max-
ima. For instance, a cursory glance at the panel displaying
16/10 spikes in figure 4 may give the impression of a tempo-
ral series having 5 rather than 10 spikes per period, something
that closer inspection reveals not to be true.

5. How to experimentally observe non-quantum
chirality ?

From the foregoing it is clear what non-quantum chirality is
and that there are no means to predict it theoretically, due to

5



J. Phys.: Condens. Matter 34 (2022) 144002 J A C Gallas

Figure 4. (Top row) Isospike diagrams obtained by counting spikes of X (left panel) and Y (right panel) showing the six points for which the
temporal evolution of these variables is illustrated in the subsequent panels. Spikes of X vary in a less complicated way than the spikes of Y.
Numbers refer to the number of spikes of some phases. (Subsequent rows) Temporal evolution of X (lower curves) and Y (upper curves).
Dots were added to some spikes to help visualization. Numbers nX/nY refer to the number of spikes in each curve, T gives the period of the
oscillations. A different temporal window is used in the rightmost panel of the bottom row.

the total absence of analytical methods to solve nonlinear sets
of coupled ordinary differential equations. Manifestly, it then
becomes important to devise practical methods to effectively
measure non-quantum chirality, methods that would work in
general, for any system described by arbitrary sets of rate
equations of motion.

As illustrated in figure 2, say, patterns defining non-
quantum chirality become visible in phase diagrams depicting
the variation of the number of spikes for large sets of solu-
tions of the equations of motion and this is the ideal setup

for observing them. Such phase diagrams can be obtained
experimentally, analogously as already done for an electronic
circuit [61]. This is the best method to detect interesting pat-
terns which are formed collectively by large sets of stable
periodic solutions of the equations of motion. Although fea-
sible, this methodology is anticipated to be a challenging task
in most circumstances, for reasons described in the original
work [61].

But such complications may be easily bypassed. Since the
temporal evolution of the six points lying inside the phases
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indicated in figure 4(b) is known, it suffices to determine
the number of spikes for points in these phases, checking
then the relative order among adjacent phases, for instance,
4 → 5, or 8 → 9 → 10, etc, in figure 4(b). Thus, by sim-
ply comparing just a few temporal signals one can identify
unambiguously non-quantum chirality. This simpler method
was recently used to obtain experimental evidence [60] of
quint points and non-quantum chirality for the minimalist flow
defined in equation (3) above.

6. Conclusions and outlook

This paper reports the discovery of non-quantum chirality in
the frequency versus amplitude control parameter plane of a
driven Brusselator, described by equations (1) and (2). These
enantiomers mediate families of stable oscillations character-
ized by different number of spikes (local maxima) per period.
The chiral structures reported here are observed through com-
puter simulations because of the complete absence of any
framework to obtain analytical solutions for systems of non-
linear sets of coupled differential equations.

Non-quantum chirality is observed by recording how the
number of spikes of periodic oscillations evolve when control
parameters of the purely classical rate equations of motion are
varied. Non-quantum chirality is a not a property of any single
trajectory but, instead, arises in specific regions of the con-
trol parameter space as a macroscopic collective property due
to a large number of distinct trajectories. It is very different
from the chirality known to exist among individual orbits
of certain algebraic clusters underlying orbital equations of
the area-preserving Hénon map, a discrete proxy of open
Hamiltonian systems that exhibit chaotic scattering and trans-
port [62].

The decisive feature that allows the observation of non-
quantum chirality is the ability to efficiently visualize very
large sets of data by using isospike diagrams [47], namely
to represent huge sets of stable oscillations in terms of their
varying number of spikes per period. As it is clear from the
comparisons in figure 1, chirality cannot be found using either
the time-honored Lyapunov diagrams, the period length dia-
grams, or any similar diagrams. Isospike diagrams can be used
to analyze arbitrary models governed by sets of ordinary dif-
ferential equation. Such diagrams are a simple generalization
for continuous-time systems of the isoperiodic diagrams used
for discrete-time maps [63].

The chirality reported for the Brusselator revises the present
knowledge about the topology of the control space this proto-
typic oscillator, and draws attention to hitherto unsuspected
properties of oscillators governed by purely classical (that
is, not quantum) equations. So far, all three chiral dynamic
systems known involve rings in control parameter space,
and it is not clear if this is indeed a necessary condition
or just merely circumstantial. In isolation, each of the two
structures that compose the chiral pairs were found in diverse
systems [51, 58]. The strongly distorted wedge-like phases in
figure 2 could be a consequence of having fixed A = 0.4 and
B = 1.2. It would be interesting to check how such phases
change when A and B are varied. A puzzling open question is

what enforces physical models to be apparently homochiral (to
prefer one handedness over the other) and this deserves to be
investigated. Lastly, another enticing open question is whether
or not it is possible to find chiral dynamic systems governed
by maps, not differential equations.
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