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This paper shows that orbital equations generated by iteration of polynomial maps do not

necessarily have a unique representation. Remarkably, they may be represented in an in¯nity of

ways, all interconnected by certain nonlinear transformations. Five direct and ¯ve inverse
transformations are established explicitly between a pair of orbits de¯ned by cyclic quintic

polynomials with real roots and minimum discriminant. In addition, in¯nite sequences of

transformations generated recursively are introduced and shown to produce unlimited supplies

of equivalent orbital equations. Such transformations are generic and valid for arbitrary dy-
namics governed by algebraic equations of motion.
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1. Introduction

Periodic dynamics of classical oscillators are commonly studied numerically when the

period grows. By contrast, the exact investigation of periodic orbits, feasible for

systems governed by algebraic equations of motion, is rarely reported because of the

inherent theoretical complications. This paper describes an exploration of exact

periodic equations of motion which arise in the investigation of dynamics generated

by polynomial maps.

Many applications, especially in biology and theoretical physics, can be usefully

described by studying the algebraic properties of the equations of motion obtained by

composition of polynomial maps. Whereas numerical work provides immediate ac-

cess to dynamical processes, there is also great merit in exact algebraic work in that it
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opens the possibility of uncovering the systematics behind recurring regularities and

obtaining valuable information buried behind the regular self-similar repetition of

structures typically present in phase diagrams. Of particular interest is the predic-

tion of metric properties of the accumulations of doubling and adding cascades

observed abundantly in applications. For instance, there are a number of recent

surveys concerning the complexities observed in accumulations of doubling and

adding cascades in laser systems, see Ref. 1, in chemistry,2 in biochemical models,3,4

and in the dynamics of cancer.5

The rationale for considering equations of motion generated by repeated iteration

is the fact that equations of higher degree are expected to comprehend equations of

lower degree, so that the solution of higher degree equations should involve a

methodology similar to the one used for equations of lower degrees. Recall that

equations of motion generated by iteration are necessarily Abelian equations,

meaning that they can be solved algebrically.6,7 Basically, the goal is to explore group

properties of Abelian equations generated by iteration to understand and predict the

sprouting of stability in phase diagrams, to articulate a theoretical framework that

could accommodate the insight won with numerical computations.

This paper reports the discovery of in¯nite sequences of transformations inter-

connecting orbital equations of motion of arbitrary degrees generated by composi-

tions of (i) the quadratic map, (ii) the H�enon map and (iii) the canonical quartic

map, all de¯ned in Sec. 3 below. Speci¯cally, we show that a certain transformation

found to establish the isomorphism between two totally real cyclic quintic ¯elds of

minimum discriminant is surprisingly not unique and that four additional trans-

formations exist that establish the same isomorphism. Moreover, we determine ex-

plicitly the ¯ve inverse transformations, an important question not addressed in

previous works. The combined actions on orbital points of the direct, inverse, and

composed transformations are characterized. In addition, generic families of trans-

formations generated recursively are introduced and used to produce an unlimited

supply of minimum discriminant isomorphic orbits. Such transformations are

not restricted to the illustrative examples discussed here, but are valid generically for

any dynamical systems of algebraic origin.8–10 They are important for the study

of orbit proliferation in equivalence classes of equations of motion produced by

discrete maps.

2. The Known Equivalence and Minimum Discriminants

To motivate the introduction of the generic transformation chains discussed in

Sec. 4, we start by considering a concrete example. In 1955, in a pioneering appli-

cation of computers to algebraic number theory, Cohn11 produced three tables of

irreducible quintic polynomials with integral coe±cients, arranged by increasing

order of their discriminant, for the three signatures12ðn; ‘Þ, namely ð1; 2Þ, ð3; 1Þ and
ð5; 0Þ, where n refers to the number of real roots while ‘ refers to the number of pairs
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of complex roots. The cyclic quintics of minimum discriminant � ¼ 14641 ¼ 114

found by Cohn are

V ðxÞ ¼ x5 � x4 � 4x3 þ 3x2 þ 3x� 1; ðVandermonde's quinticÞ ð1Þ
GðxÞ ¼ x5 þ 2x4 � 5x3 � 2x2 þ 4x� 1: ð2Þ

Cohn manifested his surprise by the fact that his tables contained up to six distinct

polynomials sharing the same discriminant and asked whether or not isodiscriminant

polynomials would de¯ne the same number ¯eld. Subsequently, Hasse posed the

same question, conjecturing the possible isomorphism between three quintics sharing

a factor 472 in their discriminant.13,14 The isomorphism conjectured by Hasse was

con¯rmed by Zassenhaus and Liang,15 who used a p-adic method to ¯nd explicit

generating automorphisms of the Hilbert class ¯eld over Qð ffiffiffiffiffiffiffiffiffi�47
p Þ. Zassenhaus and

Liang were apparently unaware of Cohn's earlier conjecture.

The ¯eld isomorphisms conjectured by Cohn were con¯rmed in 1974 by Cartier

and Roy16 who, using the same p-adic method of Zassenhaus and Liang,15 reported

tables containing explicit polynomial transformations interconnecting Cohn's iso-

discriminant quintics for all three signatures. In particular, Cartier and Roy found

the transformation

T ðxÞ ¼ x4 � 4x2 � xþ 2; ð3Þ
to connect the roots of V ðxÞ to the roots of GðxÞ. The connection is as follows. Let

x1; . . . ;x5 denote the roots of Vandermonde's celebrated quintic V ðxÞ. Then, the
roots of GðxÞ are given by T ðx1Þ; . . . ;T ðx5Þ. The inverse transformation, allowing

the passage from the roots of GðxÞ to the roots of V ðxÞ was not considered, neither
by Zassenhaus and Liang nor by Cartier and Roy. While the intention of the

earlier investigators was clearly to demonstrate the conjectured isomorphisms

explicitly, there are a number of questions left open that need to be addressed in the

context of the explicit determination of generating automorphisms of the Hilbert

class ¯eld.

The speci¯c representation of cyclic extensions of the rational ¯eld is important

for a large class of physical problems related to the dynamics and stability properties

of polynomial cycles. In this context, a complication is that, even for ¯eld extensions

of relatively small degrees, to ¯nd a suitable representation of cyclic number ¯elds is

far from trivial. For instance, the literature contains a series of papers17–19 dedicated

to ¯nding suitable forms to represent numbers in a cyclic quartic extension K of the

rational ¯eld Q. According to Hudson et al.,20 a cyclic quartic extension K of Q may

be expressed uniquely in the form

K ¼ Q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðDþB

ffiffiffiffi
D

p
Þ

q� �
;

where A;B;C;D are integers such that (i) A is square free and odd, (ii)D ¼ B2 þ C2

is square free, B;C > 0, and (iii) the greatest common divisor of A and D is 1. No

analogous result is known for quintic or higher order ¯elds.

Equivalence of orbital equations
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Before proceeding, we mention that the determination of number ¯elds having the

smallest discriminant has been a research topic since at least some 120 years. For,

according to Mayer,21 the absolute minimum discriminant for both signatures of

cubics was determined in 1896 by Furtwängler.22 Mayer himself obtained the mini-

mum discriminants for the degree n ¼ 4, discriminants also considered subsequently

by Godwin23–25 and others.26,27 Early references for n ¼ 5 include the work of Cohn11

and the thesis by Hunter.28 They both seem to be among the very ¯rst to use

computers to investigate discriminants. More recent work on n ¼ 5 was done by

Pohst29 and by Takeuchi.30 Diaz y Diaz31 reported a table containing 1077 totally

real number ¯elds of degree 5 having a discriminant less than 2 000 000. He ¯nds two

nonisomorphic ¯elds of discriminant 1 810 969, a prime, and two nonisomorphic ¯elds

of discriminant 1 891 377 ¼ 33 � 70051. All other number ¯elds in his table are

characterized by their discriminants. Among these ¯elds, three are cyclic and four

have a Galois closure whose Galois group is the dihedral group D5. The Galois

closure for all the other ¯elds found has a Galois group isomorphic to the symmetric

group S5, meaning that the underlying quintics cannot be solved by radicals. Sub-

sequently, Schwarz, Pohst and Diaz y Diaz32 reported the determination of all al-

gebraic number ¯elds F of degree 5 and absolute discriminant less than 2� 107

(totally real ¯elds), respectively 5� 106 (other signatures).

3. The New Poly-Transformations and their Actions

The polynomial V ðxÞ, Eq. (1), represents an orbital equation of motion that is

obtained for at least three paradigmatic physical models, in the so-called generating

partition limit33: the quadratic map xtþ1 ¼ 2� x 2
t , the H�enon map ðx; yÞ 7! ð2�

x2; yÞ and the canonical quartic map,34,35 namely xtþ1 ¼ ðx 2
t � 2Þ2 � 2. For details

see, e.g. Refs. 36 and 37. The basic motivation for considering isomorphisms of

Vandermonde's celebrated quintic, V ðxÞ, is to see whether or not it is possible to

interconnect distinct periodic orbits among themselves. While a general answer to

this question does not seem easy, interesting extensions and generalizations were

obtained that cast light into a promising theoretical framework to formulate such

interconnections. This is what is reported here.

From a systematic search, we ¯nd the following transformations to provide direct

passages from V ðxÞ to GðxÞ:
D1ðxÞ ¼ �x3 þ x2 þ 3x� 2 ¼ �ðx� 2Þðx2 þ x� 1Þ;
D2ðxÞ ¼ �x3 þ 2x ¼ �xðx2 � 2Þ;
D3ðxÞ ¼ x3 � x2 � 2xþ 1;

D4ðxÞ ¼ x4 � 4x2 � xþ 2 ¼ ðx� 2Þðxþ 1Þðx2 þ x� 1Þ ¼ T ðxÞ;
D5ðxÞ ¼ �x4 þ x3 þ 4x2 � 2x� 3:

Clearly, D4ðxÞ coincides with T ðxÞ, Eq. (3), previously found by Cartier and Roy.

In addition, we ¯nd the following inverse automorphisms for the passage from GðxÞ

J. A. C. Gallas
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to V ðxÞ:

I1ðxÞ ¼ 4x4 þ 10x3 � 15 x2 � 15xþ 9;

I2ðxÞ ¼ x4 þ 2x3 � 5x2 � 3xþ 3 ¼ ðxþ 1Þðx3 þ x2 � 6xþ 3Þ;
I3ðxÞ ¼ �2x4 � 5x3 þ 7x2 þ 7x� 3 ¼ �ðxþ 1Þð2x3 þ 3x2 � 10 xþ 3Þ;
I4ðxÞ ¼ �x4 � 2x3 þ 5x2 þ 2x� 3;

I5ðxÞ ¼ �2x4 � 5x3 þ 8x2 þ 9x� 5:

For every ‘, I‘ðxÞ is the inverse of D‘ðxÞ. Manifestly, these 10 transformations

prove nonuniqueness of both sets. They signi¯cantly extend current knowledge

concerning generating automorphisms.38 The transformations are not all irreducible,

and the degree of the inverses is always four.

Next, let the roots of these polynomials be so named that

V ðxÞ : x1 ¼ �1:68; x2 ¼ �0:83; x3 ¼ 0:28; x4 ¼ 1:30; x5 ¼ 1:91;

GðxÞ : y1 ¼ �3:22; y2 ¼ �1:08; y3 ¼ 0:37; y4 ¼ 0:54; y5 ¼ 1:39:

Applying DiðxÞ and IiðxÞ to the roots above produces their rearrangement as

summarized in Tables 1 and 2. From Table 1 one sees that y5 ¼ D4ðx3Þ, while from
Table 2 one gets x3 ¼ I4ðy5Þ, etc. In other words, the tables show unambiguously

that I‘ðxÞ produces arrangements inverse to those produced by D‘ðxÞ, for

‘ ¼ 1; 2; 3; 4; 5. In other words, the roots of GðxÞ are invariant under the composi-

tions D‘ðI‘ðxÞÞ, ‘ ¼ 1; 2; 3; 4; 5 while the roots of V ðxÞ are invariant under I‘ðD‘ðxÞÞ,
‘ ¼ 1; 2; 3; 4; 5. These compositions are of degrees 12 or 16, some of them can be

Table 1. Action of the direct transformations

D‘ðxiÞ ! yj.

x1 x2 x3 x4 x5

D1ðxjÞ y4 y1 y2 y5 y3
D2ðxjÞ y5 y2 y4 y3 y1
D3ðxjÞ y1 y5 y3 y2 y4
D4ðxjÞ y3 y4 y5 y1 y2
D5ðxjÞ y2 y3 y1 y4 y5

Table 2. Action of the inverse transformations

I‘ðyiÞ ! xj.

y1 y2 y3 y4 y5

I1ðyjÞ x2 x3 x5 x1 x4

I2ðyjÞ x5 x2 x4 x3 x1

I3ðyjÞ x1 x4 x3 x5 x2

I4ðyjÞ x4 x5 x1 x2 x3

I5ðyjÞ x3 x1 x2 x4 x5

Equivalence of orbital equations
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factored over the rational integers. Their discriminants are usually given by quite

large numbers and may contain large primes, for instance

D5ðI5ðxÞÞ ¼ 16x16 þ 160x15 þ 344x14 � 1208x13 � 4631x12 þ 2996x11

þ 21362x10 � 2467x9 � 49098x8 þ 1069x7 þ 60211x6 � 6121x5

� 37383x4 þ 10540x3 þ 8777x2 � 4797xþ 643;

whose discriminant is 248 � 194 � 97 � 1034 � 50145997294335406244461. In contrast,

one also ¯nds pairs of almost identical factors:

D4ðI4ðxÞÞ ¼ ðx4 þ 2x3 � 5x2 � 2xþ 2Þ � ðx4 þ 2x3 � 5x2 � 2xþ 5Þ
�ðx8 þ 4x7 � 6x6 � 24x5 þ 22x4 þ 30x3 � 21x2 � 10xþ 5Þ;

whose discriminant is �220 � 38 � 512 � 61 � 71 � 1229 � 7691. Additional compositions

reveal transformations of ever-growing degrees that produce root arrangements

identical to the ones described and that display no obvious interconnections among

them. Are V ðxÞ and GðxÞ the only quintics sharing the minimum discriminant? This

is what we investigate next.

The transformations DiðxÞ and IjðxÞ may be used to obtain in¯nite parametrized

representations of irreducible isodiscriminant quintics. Explicitly, DiðxÞ produces

the following set of n-parametrized transformations sharing the discriminant 11;4

independently of integer n:

P ð1Þ
n ðxÞ ¼ x5 � ð5nþ 8Þx4 þ ð10n2 þ 32nþ 19Þx3

� ð10n3 þ 48n2 þ 57nþ 4Þx2 þ ð5n4 þ 32n3 þ 57n2 þ 8n� 32Þx
� n5 � 8n4 � 19n3 � 4n2 þ 32nþ 23;

P ð2Þ
n ðxÞ ¼ x5 � ð5n� 2Þx4 þ ð10n2 � 8n� 5Þx3 � ð0n3 � 12n2 � 15nþ 2Þx2

þ ð5n4 � 8n3 � 15n2 þ 4nþ 4Þx� n5 þ 2n4 þ 5n3 � 2n2 � 4n� 1;

P ð3Þ
n ðxÞ ¼ x5 � ð5n� 7Þx4 þ ð10n2 � 28nþ 13Þx3 � ð10n3 � 42n2 þ 39n� 5Þx2

þ ð5n4 � 28n3 þ 39n2 � 10n� 2Þx� n5 þ 7n4 � 13n3 þ 5n2 þ 2n� 1;

P ð4Þ
n ðxÞ ¼ x5 � ð5n� 12Þx4 þ ð10n2 � 48nþ 51Þx3 � ð10n3 � 72n2 þ 153n� 96Þx2

þ ð5n4 � 48n3 þ 153n2 � 192nþ 80Þx� n5 þ 12n4 � 51n3 þ 96n2

� 80nþ 23;

P ð5Þ
n ðxÞ ¼ x5 � ð5nþ 13Þx4 þ ð10n2 þ 52nþ 61Þx3 þ ð10n3 þ 78n2 þ 183nþ 119Þx2

þ ð5n4 þ 52n3 þ 183n2 þ 238nþ 70Þx� n5 � 13n4 � 61n3 � 119n2

� 70nþ 23:

These polynomials are not independent due to linear shifts induced by DiðxÞ:
P ð1Þ

n ¼ P
ð2Þ
nþ2; P ð2Þ

n ¼ P
ð3Þ
nþ1; P ð3Þ

n ¼ P
ð4Þ
nþ1; P ð4Þ

n ¼ P
ð5Þ
n�5; P ð5Þ

n ¼ P
ð1Þ
nþ1:

They produce the same sequence of isodiscriminant cyclic quintics. In particular,

GðxÞ ¼ P
ð1Þ
�2 ðxÞ ¼ P

ð2Þ
0 ðxÞ ¼ P

ð3Þ
1 ðxÞ ¼ P

ð4Þ
2 ðxÞ ¼ P

ð5Þ
�3 ðxÞ:

J. A. C. Gallas
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Similarly, the transformations IjðxÞ lead to irreducible quintics with discriminant

114:

P ð6Þ
n ðxÞ ¼ x5 �ð5n� 44Þx4 þð10n2 � 176nþ 770Þx3

� ð10n3 � 264n2 þ 2310n� 6699Þx2

þ ð5n4 � 176n3 þ 2310n2 � 13398nþ 28974Þx�n5 þ 44n4 � 770n3

þ 6699n2 � 28974nþ 49841;

P ð7Þ
n ðxÞ ¼ x5 �ð5n� 14Þx4 þð10n2 � 56nþ 74Þx3 �ð10n3 � 84n2 þ 222n� 183Þx2

þ ð5n4 � 56n3 þ 222n2 � 366nþ 210Þx�n5 þ 14n4 � 74n3

þ 183n2 � 210nþ 89;

P ð8Þ
n ðxÞ ¼ x5 �ð5nþ 16Þx4 þð10n2 þ 64nþ 98Þx3 �ð10n3 þ 96n2 þ 294nþ 285Þx2

þ ð5n4 þ 64n3 þ 294n2 þ 570nþ 390Þx�n5 � 16n4 � 98n3

� 285n2 � 390n� 199;

P ð9Þ
n ðxÞ ¼ x5 �ð5nþ 16Þx4 þð10n2 þ 64nþ 98Þx3 �ð10n3 þ 96n2 þ 294nþ 285Þx2

þ ð5n4 þ 64n3 þ 294n2 þ 570; nþ 390Þx�n5 � 16n4 � 98n3

� 285n2 � 390n� 199;

P ð10Þ
n ðxÞ ¼ x5 �ð5nþ 26Þx4 þð10n2 þ 104nþ 266Þx3

� ð10n3 þ 156n2 þ 798nþ 1337Þx2

þ ð5n4 þ 104n3 þ 798n2 þ 2674nþ 3298Þx�n5 � 26n4 � 266n3

� 1337n2 � 3298n� 3191:

Clearly, despite the fact that I3ðxÞ 6¼ I4ðxÞ, both transformations produce identical

parametrized forms: P
ð9Þ
n ðxÞ ¼ P

ð8Þ
n ðxÞ. Analogously as before:

P ð6Þ
n ¼ P

ð7Þ
n�6; P ð7Þ

n ¼ P
ð9Þ
n�6; P ð8Þ

n ¼ P
ð6Þ
nþ12; P ð9Þ

n ¼ P
ð10Þ
n�2 ; P ð10Þ

n ¼ P
ð8Þ
nþ2;

V ðxÞ ¼ P
ð9Þ
�3 ðxÞ ¼ P

ð10Þ
�5 ðxÞ ¼ P

ð8Þ
�3 ðxÞ ¼ P

ð6Þ
9 ðxÞ ¼ P

ð7Þ
3 ðxÞ:

The shifts above imply cyclic properties of the determinants de¯ning discriminants.

4. In¯nite Chains of Discriminant-Preserving Transformations

There is a richer way of generating in¯nite families of interrelated but not trivially

connected polynomials sharing the same discriminant, minimal or not. Observing

that D4ðxÞ ¼ T ðxÞ ¼ ðx2 � 2Þ2 � 2� x is a composition of a quadratic function, we

are led to introduce families of recursive algorithms to generate unbounded sequences

of discriminant-preserving polynomials, quintic or not.

Let t0ðuÞ ¼ u2 � �0 be a polynomial on an arbitrary variable u, and containing an

arbitrary parameter �0. With t0ðuÞ, build auxiliary polynomials ftiðuÞg
tiðuÞ ¼ t2i�1 � �i; for i ¼ 1; 2; . . . :; ð4Þ

Equivalence of orbital equations
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where the several �i are also chosen arbitrarily. Manifestly, the number of individual

sets ftiðuÞg is in¯nite. As an ad hoc example, we consider the speci¯c sequence

obtained by ¯xing �i ¼ 2 for all i. In this case, the ¯rst few auxiliary polynomials

are:

t0ðuÞ ¼ u2 � 2;

t1ðuÞ ¼ u4 � 4u2 þ 2;

t2ðuÞ ¼ u8 � 8u6 þ 20u4 � 16u2 þ 2;

t3ðuÞ ¼ u16 � 16u14 þ 104u12 � 352u10 þ 660u8 � 672u6 þ 336u4 � 64u2 þ 2:

These polynomials are then used to de¯ne a chain of transformations, namely

TiðuÞ ¼ tiðuÞ � u; for i ¼ 0; 1; 2; . . . : ð5Þ

By construction, T1ðuÞ coincides with T ðxÞ in Eq. (3), the transformation found by

Cartier and Roy. The transformations TiðuÞ preserve discriminants, minimal or

not, for quintics of any signature, cyclic or not. Generalized chains may be

obtained analogously by iterating more complicated functions and by allowing �i

to vary as the iteration proceeds.

When applied to V ðxÞ and GðxÞ, the transformations TiðuÞ produce parametrized

families which split dichotomically into either periodic or nonperiodic sequences of

irreducible equivalent quintics. For instance, representing by TiðV Þ the operation of

applying the transformation TiðxÞ to the roots of V ðxÞ, we obtain a period-¯ve

polynomial cycle interconnecting three polynomials which repeat mod 5 inde¯nitely

in the following order:

AðxÞ ¼ T0ðV Þ; GðxÞ ¼ T1ðV Þ; GðxÞ ¼ T2ðV Þ; AðxÞ ¼ T3ðV Þ; BðxÞ ¼ T4ðV Þ;
AðxÞ ¼ T5ðV Þ; GðxÞ ¼ T6ðV Þ; GðxÞ ¼ T7ðV Þ; AðxÞ ¼ T8ðV Þ; BðxÞ ¼ T9ðV Þ;

where GðxÞ is de¯ned in Eq. (2) and

AðxÞ ¼ x5 þ 2x4 � 5x3 � 13x2 � 7x� 1; �A ¼ 114;

BðxÞ ¼ x5 þ 2x4 � 16x3 � 24x2 þ 48xþ 32; �B ¼ 114 � 220:

Clearly, V ðxÞ is not part of the above 5-cycle but leads to it. It is a sort of

preperiodic equation of motion, mimicking the known behavior of preperiodic

orbital points.36 The above cycling of polynomials implies the existence of an

in¯nity of additional direct transformations of ever increasing degrees allowing

the passage from V ðxÞ to GðxÞ. In sharp contrast, the analogous sequence

obtained from TiðGÞ, for i ¼ 0; 1; 2; . . . , produces a nonrepeating sequence of

quintics.

Many other never-repeating sequences of isomorphic irreducible quintics sharing

similar discriminants may be extracted from additional parametrized families of

J. A. C. Gallas
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totally real cyclic quintics. Four examples are

AnðxÞ ¼ x5þð5n� 9Þx4þð10n2� 36nþ 28Þx3þð10n3� 54n2þ 84n� 35Þx2

þð5n4� 36n3þ 84n2� 70nþ 15Þxþn5� 9n4þ 28n3� 35n2þ 15n� 1;

BnðxÞ ¼ x5�ð5nþ 3Þx4þð10n2þ 12n� 3Þx3�ð10n3þ 18n2� 9n� 4Þx2

þð5n4þ 12n3� 9n2� 8nþ 1Þx�n5� 3n4þ 3n3þ 4n2�n� 1;

CnðxÞ ¼ x5�ð5nþ 15Þx4þð10n2þ 60nþ 35Þx3�ð10n3þ 90n2þ 105nþ 28Þx2

þð5n4þ 60n3þ 105n2þ 56nþ 9Þx�n5� 15n4� 35n3� 28n2� 9n� 1;

DnðxÞ ¼ x5�ð5nþ 18Þx4þð10n2þ 72nþ 35Þx3�ð10n3þ 108n2þ 105nþ 16Þx2

þð5n4þ 72n3þ 105n2þ 32n� 2Þx�n5� 18n4� 35n3� 16n2þ 2nþ 1:

The discriminant of these quintics does not depend on n, being 114 for AnðxÞ,
BnðxÞ, and CnðxÞ, and 118 for DnðxÞ. Families of isodiscriminant quintics parame-

trized by more than one parameter can also be generated with TiðuÞ but this will not
be pursued here.

To conclude this section, we observe that the above parametric forms share

properties similar to a celebrated parametrized family of quintics, found by Emma

Lehmer39,40 to provide connections between the so-called Gaussian period equations

and cyclic units. For instance, in the notation of Butler and McKay,41 their common

Galois group is 5T1. It is tempting to conjecture that the parametric forms reported

here might also be linear combinations of Gaussian periods, providing interconnec-

tions between Gaussian period equations and cyclic units. This, however, remains to

be ascertained.

5. Conclusions and Outlook

This paper reported direct and inverse transformations showing that in addition to a

transformation found by Cartier and Roy, Cohn's conjectured isomorphism among

minimum discriminant cyclic quintics can be established by nine new transforma-

tions, Therefore, altogether there are ¯ve direct and ¯ve inverse transformations

which, when combined, reveal how orbital points are rearranged cyclically under the

transformations.

An in¯nite chain of transformations was introduced and used to show that, apart

from Cohn's pair of quintics, there is an apparently unbounded quantity of iso-

morphic quintics sharing the same ¯eld discriminant and group properties. The chain

of transformations is generated by a simple recurrence relation, Eq. (5), and is valid

to transform arbitrary equations of motion, of any degree, for systems governed by

discrete maps. The chain introduced here may be naturally extended by replacing the

quadratic functions underlying Eq. (5) by any arbitrary set of functions. In other

words, the chain of transformations provide an e®ective tool to study the transfor-

mation properties of nonlinear equations of mathematical physics, so popular now-

adays in practical applications. We hope to return to this in the future.

Equivalence of orbital equations
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To conclude, we remark that the aforementioned question raised by Hasse was

answered only in part by Zassenhaus and Liang. It remains to be determined whether

or not there are additional analogous transformations interconnecting Hasse's triplet

of quintics, which are not cyclic and have complex roots. Explicit expressions for

generating automorphisms play a signi¯cant role in the study of Galois-theoretic

aspects of iterated maps and Abelian groups.42–45
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