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ABSTRACT

The peroxidase–oxidase (PO) reaction is a paradigmatic (bio)chemical system well suited to study the organization and stability of
self-sustained oscillatory phases typically present in nonlinear systems. The PO reaction can be simulated by the state-of-the-art Bron-
nikova–Fedkina–Schaffer–Olsen model involving ten coupled ordinary differential equations. The complex and dynamically rich distribution
of self-sustained oscillatory stability phases of this model was recently investigated in detail. However, would it be possible to understand
aspects of such a complex model using much simpler models? Here, we investigate stability phases predicted by three simple four-variable
subnetworks derived from the complete model. While stability diagrams for such subnetworks are found to be distorted compared to those
of the complete model, we find them to surprisingly preserve significant features of the original model as well as from the experimental
system, e.g., period-doubling and period-adding scenarios. In addition, return maps obtained from the subnetworks look very similar to
maps obtained in the experimental system under different conditions. Finally, two of the three subnetwork models are found to exhibit quint
points, i.e., recently reported singular points where five distinct stability phases coalesce. We also provide experimental evidence that such
quint points are present in the PO reaction.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0093169

The peroxidase–oxidase (PO) reaction is one of the simplest
biological systems to exhibit complex dynamics. The reaction
involves a single enzyme and two substrates plus one or two
modifiers. The complex dynamics has been simulated by a
realistic ten-variable mathematical model, the so-called Bron-
nikova–Fedkina–Schaffer–Olsen (BFSO) model. However, this
model is by itself a complex system to analyze, so it would be con-
venient to break it up into smaller subnetworks that can be ana-
lyzed individually much more easily. Here, we study three simple
four-variable subnetwork models derived from the full model.
These three simpler models were previously introduced by Sensse,
Hauser, and Eiswirth in an investigation of Shilnikov chaos in the
PO reaction. We find that each of the three subnetwork models
can well reproduce different aspects of the experimental system
in terms of bifurcations and return maps. In addition, two of the

models predict the existence of quint points, namely, very recently
reported singular points where five distinct stability phases coa-
lesce. New experimental data indicate that such quint points are
indeed present in the experimental system.

I. INTRODUCTION

Complex dynamics is a widespread phenomenon in biological
systems, ranging from the ten year oscillations observed in pop-
ulations of Canadian lynx1 to the fast complex oscillations in the
electrical activity of the brain and the heart2 to complex oscilla-
tions in intracellular concentration of calcium.3 On a scale of even
higher spatial resolution, one finds oscillations in enzyme catalyzed
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reactions.4,5 In this latter category, one also finds the oscillating
peroxidase–oxidase reaction.6

The peroxidase–oxidase (PO) reaction entails the oxidation
of an organic electron donor (YH2) with molecular oxygen as the
electron acceptor,

2YH2 + O2 → 2Y + 2H2O. (1)

The reaction is catalyzed by the enzyme peroxidase (EC 1.11.1.7).
The electron donor used in reaction (1) may be one of a num-
ber of small organic molecules or reduced nicotinamide adenine
dinucleotide (NADH).6,7

The oscillating PO reaction is one of a few prototype
(bio)chemical reaction systems, where complex dynamic behav-
iors have been studied extensively, both experimentally and
theoretically.8–11 The reaction has exhibited a rich variety of dynam-
ical behaviors depending on the experimental conditions.5,12–20

The complex dynamics of the PO reaction has been simulated
by various mathematical models. Attempts to reproduce the exper-
imentally observed dynamics have been made using both simple
hypothetical models15,21 and more elaborated models.22–27 One of the
latter types of models is the Bronnikova–Fedkina–Schaffer–Olsen
(BFSO) model,27 listed in Table I. Numerical simulations of this
model revealed the existence of extended domains of stable complex
and chaotic dynamics, which are both rich and intricate.20,28–34 The
BFSO model has been successful in simulating many of the experi-
mentally obtained dynamic behaviors, including the period-adding
and period-doubling bifurcations scenarios.17,28 However, the model
has been less successful when it comes to reproducing some early
experimentally observed bifurcation scenarios involving bursting
oscillations.14,15,21

TABLE I. List of reactions and rate expressions for the BFSO model. Per(X) refers

to the oxidation state of peroxidase: Per(II), ferrous peroxidase; Per(III), ferric perox-

idase; Per(IV), compound II; Per(V), compound I; Per(VI), compound III. NAD• is the

free radical derived from one-electron oxidation of NADH. O−

2 is superoxide radical.

Reaction Rate expressiona

(1) NADH + H+ + O2 → NAD+

+ H2O2 k1[NADH][O2]
(2) H2O2 + Per(III) → H2O + Per(V) k2[H2O2][Per(III)]
(3) Per(V) + NADH → Per(IV) + NAD• k3[Per(V)][NADH]
(4) Per(IV) + NADH → Per(III)

+ NAD• + H2O k4[Per(IV)][NADH]
(5) NAD•

+ O2 → NAD+
+ O−

2 k5[NAD•][O2]
(6) O−

2 + Per(III) → Per(VI) k6[O
−

2 ][Per(III)]

(7) 2O−

2 + 2H+ → O2 + H2O2 k7[O
−

2 ]
2

(8) Per(VI) + NAD•
→ Per(V) + NAD+ k8[Per(VI)][NAD•]]

(9) 2NAD•
→ NAD2 k9[NAD•]2

(10) Per(III) + NAD•
→ Per(II) + NAD+ k10[Per(III)][NAD•]

(11) Per(II) + O2 → Per(VI) k11[Per(II)][O2]
(12) → NADH k12

(13) O2(gas) � O2(liquid) k13([O2]eq − [O2])

aThe activity of H+ is absorbed into the rate constant.

To better understand the complex dynamical behaviors sup-
ported by the BFSO model, it would be convenient to study sim-
plifications of the model, preferentially involving fewer variables.
In the full BFSO model, the various feedback loops responsible for
the origin of oscillations and complex dynamics are not obvious
as is the case for the simple abstract models of the reaction.15,21,35

Hence, it is not easy to get a detailed understanding of the individ-
ual sub-mechanisms responsible for the various kinds of complex
behavior exhibited by the model. One example is the surprising and
unpredictable complex behavior induced by changes in the enzyme
concentration.36 In 2006, Sensse et al.37 succeeded in reducing the
BFSO model to a six-variable model and, subsequently, to three
simpler four-variable subnetwork models, which could be studied
individually. The three four-variable subnetworks so obtained have
strong similarities to three-variable extended activator–inhibitor
networks introduced earlier.38 It was possible to find conditions for
homoclinic orbits and Shilnikov chaos in these simple three-variable
models and in the three four-variable subnetwork models of the PO
reaction.37,38

In the present paper, we investigate these three four-variable
models further. Our investigations involve computations of isospike
diagrams, namely, stability diagrams based on counting the number
of spikes per period for all periodic oscillations39,40 of the individual
variables. Such diagrams are then compared with similar diagrams
of the original BFSO model.29,36 The isospike stability diagrams
of the tree subnetwork models reveal complex periodic structures
that enlighten and explain previous experimental observations in
the PO reaction, that is, bifurcations and return maps. Two of
the subnetworks also predict the existence of the recently reported
quint points,10,41–43 that is, singular points where five distinct sta-
bility phases coalesce. Finally, we present new experimental results
providing evidence of quint points in the laboratory system.

II. EXPERIMENTAL SECTION

Experiments were performed in a 20 × 20 × 43.5 mm quartz
cuvette equipped with an oxygen electrode (Microelectrodes Inc.,
Bedford, NH). A stirring motor was mounted on top of the cuvette
and with a stirring shaft that ended in a stirring cross 2 mm above the
bottom of the cuvette. The cuvette was mounted in a Zeiss Specord
S10 diode array spectrophotometer and only the spectrophotome-
ter’s tungsten lamp was used as a light source in order to avoid
photochemical reactions induced by UV irradiation. The absorben-
cies of NADH and oxyferrous peroxidase (compound III) were
recorded at 360 and 418 nm, respectively, at 2 s intervals.

The reactor had a liquid volume of 8 mL as well as an approxi-
mately 9 mL gas phase above the reaction mixture. The reaction mix-
ture contained 0.1 µM methylene blue, 600 µM 4-hydroxybenzoic
acid, and 2.4 µM horseradish peroxidase, in 0.1M sodium phosphate
buffer, pH 5.7 or 6.1. NADH was delivered to the reaction vessel by
pumping a 0.1 M aqueous solution at a constant flow rate through
a capillary tube connected to a syringe pump. The volume of the
added NADH solution was negligible and balanced by an equal vol-
ume of water evaporated. Thus, the liquid volume was effectively
constant at 8 mL throughout an experiment. Oxygen was supplied
at atmospheric pressure to the reaction mixture via a gas mixer. The
moisturized O2/N2 stream contained 1.05% (v/v) oxygen. The rate
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of oxygen diffusion vO2 into the liquid is given by

vO2 = K
(

[O2]eq − [O2]
)

,

where [O2] is the oxygen concentration in solution, [O2]eq is the oxy-
gen concentration at equilibrium, and K is the oxygen transfer con-
stant (equivalent to k13 in Table I). For a stirring rate of 1200 rpm, K
was determined as 5.6 × 10−3 ± 0.1 × 10−3 s−1. Prior to the start of
each experiment, the reaction mixture containing enzyme, methy-
lene blue, and 4-hydroxybenzoic acid in buffer was thermostated
at 28.0 ± 0.1 ◦C and equilibrated with pure nitrogen. Experiments
were typically started by adding NADH at a flow rate of 50 µL h−1.
As the absorbance at 360 nm reached a level close to the NADH con-
centration associated with a given dynamic state, the composition of
the gas stream was switched from pure N2 to the O2/N2 mixture.
Then, the NADH flow rate was adjusted (35–50 µL h−1) such that
the NADH concentration oscillated around a constant mean level
corresponding to this particular dynamic state. The dynamics were
then recorded over a period of time. Thereafter, the pumping rate
was changed to allow the NADH concentration to settle on another
mean level associated with a different kind of behavior. Thus, chang-
ing the mean NADH concentration allows for the observation of
different dynamical states as well as an unambiguous determina-
tion of the order in which they occur. Accordingly, we use the mean
NADH concentration as a bifurcation parameter. This concentra-
tion was calculated using the Lambert–Beer law and an extinction
coefficient of 4.3 × 103 M−1 cm−1 for NADH at 360 nm.44 One could
also use the NADH flow rate which, of course, determines the aver-
age NADH concentration, even though the relation between the two
is nonlinear. However, this approach, while it makes for a somewhat
more straightforward comparison of the data and the simulations, is
less reliable. This is so because, in spite of great precautions to pre-
pare identical NADH stock solutions, small day-to-day variations in
NADH concentrations are unavoidable. If uncontrolled, these vari-
ations will necessarily affect the dynamics and are consequently a
potential source of error. In short, the use of mean NADH concen-
tration as described here removes an otherwise inevitable source of
variability between experiments.

Horseradish peroxidase (RZ 3.0) and NADH disodium salt
were purchased from Roche Mannheim; methylene blue was pur-
chased from Merck. 4-Hydroxybenzoic acid was kindly provided
by the Institute of Physics, Chemistry and Pharmacy, University of
Southern Denmark.

III. EXTENDED ACTIVATOR–INHIBITOR MODELS OF

THE PO REACTION

Oscillations and complex dynamics in the simple abstract mod-
els of the PO reaction have been studied in some detail15,21,35 and the
mechanisms responsible for the oscillations and complex dynamics
are fairly well-understood. By contrast, the underlying mechanisms
responsible for oscillations and complex dynamics in the detailed
models are less easy to comprehend, mainly because these mod-
els may involve up to ten independent variables.24–27 Therefore, it
would be helpful if the number of variables of the more complex
models could be reduced. Sensse et al.37 managed to reduce the ten-
variable BFSO scheme to a six-variable model by eliminating four
redundant variables, Per(IV), Per(V), NADH, and H2O2 and, from

this six-variable model, they extracted three four-variable subnet-
work models, which were classified as extended activator–inhibitor
models.38 Activator–inhibitor models are, in their simplest form,
two-variable oscillators involving a positive and a negative feed-
back loop. Such models may display simple periodic oscillations.
But when extended with a third variable and an additional feedback
loop, they may exhibit complex periodic oscillations and homoclinic
behavior (chaos).38

The three subnetwork models derived from the reduced six-
variable BFSO model share a common reaction core constituted
by reactions (1)–(8) in Table II. The reaction numbers refer to the
numbers in the original publication.37 These reactions – involving
the species NAD•, O2, and Per(VI)—form a minimal reaction core
for oscillatory behavior. This minimal core displays purely periodic
oscillations. In order to allow for complex dynamics and chaos, the
core reactions (1)–(8) must be extended with an additional feed-
back from an additional variable, which may be either O−

2 , Per(II) or
Per(III) as described by reaction (13), reactions (11)–(12), or reac-
tions (9)–(10) in Table II, respectively.37 The core reactions (1)–(8)
and the supplementary reactions listed in Table II form the three
subnetwork models. It is worth pointing out that the reactions of
the subnetworks do not always make an obvious chemical sense
as they have been constructed by lumping together reactions from
Table I. In this lumping process, some reactants and products that
do not enter into the resulting differential equations have been omit-
ted. For example, reaction (1) in Table II is the result of lumping
reactions (8), (3), and (4) in Table I. Furthermore, since NADH
is not a variable in these reduced models, there is also no inflow

TABLE II. List of reactions and rate expressions for the three subnetwork models

(subnetworks 1, 2, and 3) of the PO reaction. Each subnetwork consists of the core

reactions (1)–(8) plus either reaction (13) (subnetwork 1), reactions (11)–(12) (subnet-

work 2), or reactions (9)–(10) (subnetwork 3). The meanings of Per(II), Per(III), and

Per(VI) are the same as in Table I.

Reaction Rate expression

Core reactions
(1) NAD•

+ Per(VI) → 2NAD• k1[NAD•][Per(VI)]
+ Per(III)

(2) NAD•
+ O2 → NAD+

+ O−

2 k2[NAD•][O2]

(3) 2NAD•
→ (NAD)2 k3[NAD•]2

(4) → NAD• k4

(5) O2 → k5[O2]
(6) →O2 k6

(7) Per(VI) → k7[Per(VI)]
(8) → Per(VI) k8

Subnetwork 1

(13) 2O−

2 + 2H+ → O2 k13[O
−

2 ]
2

Subnetwork 2
(11) NAD• + Per(III) → Per(II) k11[NAD•]
(12) O2 + Per(II) → Per(VI) k12[O2][Per(II)]

Subnetwork 3
(9) Per(III) → Per(VI) k9[Per(III)]
(10) Per(III) → k10[Per(III)]
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of this [reaction (12) in Table I]. This role is, according to Sensse
et al.,37 instead played by reaction (4) in Table II. Also, enzyme inter-
mediates are created and destroyed in an unbalanced way, e.g., in
reactions (7), (8), and (10) in Table II. This precludes the conser-
vation of total enzyme concentration. In the BFSO model (and in
the experimental system), the sum of all concentrations of enzyme
forms (namely, [Per(II)]+[Per(III)]+[Per(IV)]+[Per(V)]+[Per(VI)])
is a constant and hence the total concentration of an enzyme can be
used as a parameter.36

Sensse et al. have shown37 that homoclinic orbits and Shilnikov
chaos occur in all three subnetworks as well as in the reduced six-
variable BFSO model. This suggests that Shilnikov chaos may be also
present in the original ten-variable BFSO model and, therefore, also
in the experimental system. Previously, circumstantial evidence for
homoclinic chaos has been presented, both in the experimental PO
reaction20 and in the BFSO model, but this evidence was based on the
similarity of return maps to those of a standard equation exhibiting
homoclinic chaos and hence is only indirect.

The ODEs of the three subnetwork models listed below
were simulated and isospike stability diagrams were computed as
described in detail previously.36 We used the standard fourth-order

Runge–Kutta integrator with fixed step-size h = 0.01, following the
attractor horizontally from right to left, from the initial conditions
given below. The steady states, eigenvalues, Jacobian matrices, Lya-
punov exponents (to estimate Kaplan–Yorke dimension45), and
return maps obtained from Poincaré sections were computed using
the COPASI software.46 The computations of eigenvalues confirmed
that the steady states corresponding to chaotic behavior were saddle
foci with a complex pair of eigenvalues and two real eigenvalues. The
real part of the complex pair was positive, while the real eigenvalues
were negative.

A. Subnetwork 1

This subnetwork model is, like the other two subnetwork
models, centered around a basic core mechanism, which includes
reactions (1)–(8) in Table II. These reactions form a three-variable
mechanism, which involves an autocatalytic reaction [reaction (1)]
and a negative feedback [reaction (3)], and allow for only simple
periodic oscillations. However, extending this mechanism with O−

2

as a fourth variable [through reactions (2) and (13)] creates an extra
positive feedback loop between O2 and O−

2 as can be seen from

FIG. 1. Stability diagrams for subnetwork 1, obtained by counting spikes for the four variables in Eqs. (2)–(5), and plotting them recycling colors modulo 17. Top row: global
view. Bottom row: magnifications of the white boxes seen on the top row. Quint points are located at the center of the white circles in the diagram for variable x3. The rectangle
near Q is magnified in Fig. 2 and illustrates many additional quint points. The distribution of spikes recorded for x3 contains several additional features not present in the
distributions recorded for the other three variables.

Chaos 32, 063122 (2022); doi: 10.1063/5.0093169 32, 063122-4

Published under an exclusive license by AIP Publishing

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

the Jacobian matrix.37 This makes it possible for the model to show
complex dynamical behavior. Using the rate expressions in Table II,
one obtains37 the following ODEs for subnetwork 1:

dx1

dt
= k1x1x3 − k2x1x2 − 2k3x

2
1 + k4, (2)

dx2

dt
= −k2x1x2 − k5x2 + k6 + k13x

2
6, (3)

dx3

dt
= −k1x1x3 − k7x3 + k8, (4)

dx6

dt
= k2x1x2 − 2k13x

2
6. (5)

Here, x1, x2, x3, and x6 represent NAD•, O2, Per(VI) (compound III),
and O−

2 , respectively. The rate constants are k2 = 0.415, k3 = 0.007,
k5 = 0.14, k6 = 0.71, k7 = 10−4, k8 = 0.353, k13 = 6 × 10−4, while
k1 and k4 vary in the intervals defined in Fig. 1. Suitable initial
conditions are x1(0) = 1, x2(0) = 2, x3(0) = 20, and x6(0) = 20.

B. Subnetwork 2

Subnetwork 2, like subnetwork 1, involves NAD•, O2, and
Per(VI) in the core mechanism. However, in this model, the fourth
variable is Per(II), which participates in reactions (11) and (12) in
Table II. This creates an additional positive feedback between NAD•,
Per(VI), and Per(II).37 The equations that can be derived from the
rate expressions in Table II are

dx1

dt
= k1x1x3 − k2x1x2 − 2k3x

2
1 + k4 − k11x1, (6)

dx2

dt
= −k2x1x2 − k5x2 + k6 − k12x2x5, (7)

dx3

dt
= −k1x1x3 − k7x3 + k8 + k12x2x5, (8)

dx5

dt
= k11x1 − k12x2x5. (9)

Here, x1, x2, x3, and x5 represent NAD•, O2, Per(VI), and
Per(II), respectively. The rate constants are k2 = 0.15, k3 = 0.008,
k5 = 0.132, k6 = 1, k7 = 0.01, k8 = 0.59, k11 = 0.23, k12 = 0.015,
and k1 and k4 as defined in Fig. 3. Initial conditions are x1(0) = 1,
x2(0) = 2, x3(0) = 20, and x5(0) = 20.

C. Subnetwork 3

Subnetwork 3 has Per(III) as its fourth variable through reac-
tions (9) and (10) in Table II. From the Jacobian matrix, it can be
inferred that it has a positive feedback loop between NAD•, Per(VI),
and Per(III) and an additional positive feedback loop between
Per(VI) and Per(III). The equations that can be derived from the

FIG. 2. Magnification of the rectangle near Q in Fig. 1. The distribution of spikes
recorded for x3 contains several additional features not present in the distributions
recorded for the other three variables. The three black dots indicate the location of
quint points, the first of a discrete network of points where five oscillatory modes
with a distinct number of spikes per period coalesce. Color coding has the same
meaning as in Fig. 1.

rate expressions in Table II are

dx1

dt
= k1x1x3 − k2x1x2 − 2k3x

2
1 + k4, (10)

dx2

dt
= −k2x1x2 − k5x2 + k6, (11)

dx3

dt
= −k1x1x3 − k7x3 + k8 + k9x4, (12)

dx4

dt
= k1x1x3 − k9x4 − k10x4. (13)

Here, x1, x2, x3, and x4 represent NAD•, O2, Per(VI), and Per(III),
respectively. The rate constants are k2 = 0.3, k3 = 0.008, k5 = 0.285,
k6 = 1.25, k7 = 10−3, k8 = 0.07, k9 = 0.052, k10 = 0.003 96, and k1

and k4 as shown in Fig. 4. Initial conditions are x1(0) = 1, x2(0) = 2,
x3(0) = 20, and x4(0) = 20.

IV. STABILITY DIAGRAMS AND BIFURCATION

SCENARIOS OF SUBNETWORKS 1, 2, AND 3

One goal of the current study is to compare transitions
between different states of complex behaviors in the three subnet-
work models to those of the corresponding transitions observed
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in the original BFSO model29,36 and in experiments of the PO
reaction.14,17,20 Most of these experiments were conducted at enzyme
concentrations between 0.5 × 10−6 and 1.5 × 10−6M. In our recent
study of complex dynamics in the BFSO model at different concen-
trations of peroxidase,36 we showed that at enzyme concentrations
below 2 × 10−6M, the dynamics is dominated by subnetworks 1
and 3, while subnetwork 2 seems to play a minor role. As the
enzyme concentration is increased, the contribution of subnetwork
2 increases from close to zero and becomes dominant at enzyme
concentrations around 5 × 10−6M or more.36

In several experimental studies, the flow rate of NADH is used
as a bifurcation parameter.20,28 Therefore, one of the parameters to
vary is rate constant k4, which, as mentioned in the previous section,
was suggested to represent the inflow of NADH.37 As the second
parameter in the isospike stability diagrams, we have chosen rate
constant k1, which determines the rate of the autocatalytic reaction.

Figure 1 shows isospike stability diagrams for subnetwork 1,
Eqs. (2)–(5), while isospike diagrams of subnetworks 2 and 3 are
shown in Figs. 3 and 4, respectively. None of these diagrams are
structurally similar to the ones obtained for the original BFSO
model,29,36 although there is some resemblance of the diagram
obtained for subnetwork 1 to a diagram obtained for the origi-
nal BFSO model at an enzyme concentration of 1.8 × 10−6 M.36

For example, in the experimental system and in the original BFSO

model, the dynamics begins with simple periodic oscillations at low
flow rates of NADH and becomes more complex as this flow rate
increases. However, while, according to Sensse et al.,37 k4 represents
the NADH flow rate in the reduced six-variable model and in the
three four-variable subnetworks, such a transition from simple peri-
odic oscillations to still more complex oscillations as k4 is increased
is only observed in the subnetwork 1 diagram. In the subnetwork
2 diagram, the transition from simple periodic oscillations to com-
plex dynamics happens when k4 is decreased and in the subnetwork
3 diagram, neither period-doubling nor period-adding bifurcations
can be observed when k4 is changed.

The black regions in the diagrams in Figs. 1–4 represent
non-periodic dynamics, which again represent chaotic dynam-
ics. Magnifications of these black (chaotic) domains reveal many
shrimp-shaped isospike domains.47,48 Unlike the BFSO model, where
some non-periodic domains represent quasiperiodic dynamics,30,31,49

we have not yet found evidence for quasiperiodic oscillations in the
three subnetwork models studied here.

In spite of the different forms of the isospike diagrams of
the three subnetworks compared to the diagrams of the origi-
nal BFSO scheme, there are some interesting and relevant results
obtained from the isospike diagrams in Figs. 1–4. For example,
increasing the rate constant k1 for the three subnetworks is anal-
ogous to increasing the concentration of the aromatic cofactors

FIG. 3. Stability diagrams for subnetwork 2, obtained by counting spikes for the four variables in Eqs. (6)–(9), and plotting them recycling colors modulo 17. Top row: global
view. Bottom row: magnifications of the white boxes seen on the top row. A quint point is located at the center of the circles in the diagram for variable x1. The distribution of
spikes recorded for x1 is markedly distinct from the distributions for the other three variables.
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FIG. 4. Stability diagrams for subnetwork 3, obtained by counting spikes for the four variables in Eqs. (10)–(13), and plotting them recycling colors modulo 17. Top row: global
view. Bottom row: magnifications of the white boxes seen on the top row.

such as 2,4-dichlorophenol.15 It was previously shown that a period-
doubling route to chaos could be observed when the concentration
of 2,4-dichlorophenol was increased.17 The same is the case if we
increase the rate constant k1 in the subnetwork 1 model (from
around 0.0015 to 0.003). Likewise, it may be argued that the rate
of reaction 1 will also increase if the concentration of peroxidase
increases. Previously, it was shown experimentally that a decrease in
the concentration of peroxidase may induce a transition from sim-
ple periodic oscillations to chaos to bursting oscillations.14,15 Here,
a similar observation can be made for subnetwork 3 following a
decrease in the rate constant k1 (from 0.06 to around 0.045). How-
ever, the bursting oscillations obtained here are slightly different
from those observed in the experiments.14,15 Also, the leftmost spike
distributions recorded for x1, x2, and x4 in Fig. 4 show regions with
spikes mosaics observed earlier in chaos-free regions.50

Another interesting result is the observation of quint points in
subnetworks 1 and 2 (see Figs. 1 and 3).10,41,42 A quint point is a point
where five distinct isospike phases meet. An example of such a point
can be observed in the upper left panel of Fig. 3 (variable x1). In this
case, the five phases are oscillations with 3, 4, 6, 7, and 8 spikes per
period. Further magnifications (not shown here) reveal additional
quint points, but these are rather compressed. Similar quint points
can be spotted in the lower panel of Fig. 1 (variable x3). A magnifica-
tion of the white rectangle next to the Q in Fig. 1(c) (shown in Fig. 2)

reveals three quint points, and further magnifications of this region
(not shown) show cascades of additional quint points. Interestingly,
new experiments have now revealed evidence for such quint points.

Figure 5 shows the time series of the absorbance at 418 nm
due to Per(VI) (compound III) at two different pH values (pH 5.7
and pH 6.1) and at different mean concentrations of NADH, cor-
responding to different flow rates of NADH. In Fig. 5(a) (pH 5.7),
the dynamics change from oscillations with two spikes per period
to oscillations with four spikes per period to oscillations with eight
spikes per period as the mean NADH concentration is increased.
In Fig. 5(b), the corresponding transitions are from three spikes per
period to six spikes per period, to seven spikes per period. In the
diagram in Fig. 5(c), we show an experimental isospike diagram
with all complex periodic and non-periodic states plotted against
the mean NADH level. We note that at a mean NADH concen-
tration from about 134 µM to about 142 µM, we observe a similar
pattern of periodic states as in the left panel of Fig. 3 when k4 is
decreased. It is noteworthy that these experiments are performed
with a peroxidase concentration of 2.4 µM, i.e., higher than in pre-
viously reported experiments20,28,36 and in the concentration range
where subnetwork 2 is supposed to play a more significant role.36

It is worth pointing out that so far quint points have not yet been
reported for the original BFSO model although it seems reasonable
to conjecture their existence.
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FIG. 5. Evidence for a quint point in the experimental PO reaction. (a) and (b) are plots of the absorbance at 418 nm against time. The time series in (a) were recorded at
pH 5.7, while the series in (b) were recorded at pH 6.1. In (c), we show the number of spikes per period plotted as a function of the mean NADH concentration at which the
oscillations were obtained. (c) indicates non-periodic (chaotic) oscillations. The experiments were conducted in 0.1M phosphate buffer, pH 5.7 or 6.1. The reaction mixture
contained 2.4µM horseradish peroxidase, 600µM 4-hydroxybenzoic acid, and 0.1µM methylene blue. Each experiment was started with an initial concentration of NADH
of 0µM and an oxygen concentration of 0µM. NADH was pumped into the reaction mixture until it reached a concentration between 120 and 170µM. Then, the oxygen
in the gas stream was switched from 0% to 1.05% (v/v) and the pumping rate was adjusted such that the NADH concentration settled on a constant mean level, and the
dynamics of Per(VI) (absorbance at 418 nm) was recorded for at least 1000 s. Other experimental conditions as stated in Sec. II.

FIG. 6. Returnmaps (next-amplitudemaps) of O2 (x2) obtained for representative chaotic oscillations of (a) subnetwork 3 when k1 = 0.0546 and k4 = 0.0077, (b) subnetwork
2 when k1 = 0.031 and k4 = 0.0008, and (c) subnetwork 1 when k1 = 0.0065 and k4 = 0.58.
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We also computed return maps for chaotic oscillations for all
three subnetworks. These are shown in Fig. 6. We note that the
map for subnetwork 3 shown in Fig. 6(a) resembles the experimen-
tal map found in early experimental data from the PO reaction14,21

while the map for subnetwork 1 shown in Fig. 6(c) resembles sub-
sequent experimental maps.17,20 The map obtained for subnetwork 2
shown in Fig. 6(b) appears somewhat “in between” the maps for the
other two subnetworks. Such a map has not yet been observed in the
experimental system. The transition from fractal to almost 1D return
map as we go from Figs. 6(a) to 6(c) is supported by computations
of Kaplan–Yorke DKY dimension.45 The attractor corresponding to
the return map in 6(a) has a DKY = 2.13, while the attractors corre-
sponding to return maps in Figs. 6(b) and 6(c) have DKY of 2.11 and
2.08, respectively. For comparison, a very recent computation51 for
the Lorenz attractor reports DKY = 2.06.

V. DISCUSSION

In the present paper, we have studied three four-variable sub-
network models derived from the ten-variable BFSO model of
the PO reaction.37 The three subnetworks belong to the class of
extended activator–inhibitor systems.37,38 Our study involved the
construction of isospike stability diagrams to get an overview of
the possible complex dynamics states for these subnetworks and
their mutual placement in control parameter space. We also tested
the complexity states of the subnetworks against states of complex-
ity observed in the original BFSO model and in the experimental
system. It is interesting that the three subnetworks reproduce dis-
tinct aspects obtained in the experimental system under different
experimental conditions. Subnetwork 1 is capable of reproducing
the experimental observation of a period-doubling cascade when the
concentration of the phenolic modifier (e.g., 2,4-dichlorophenol) is
increased and the corresponding almost 1D return map of chaotic
fluctuations of oxygen concentration.17 It is also capable of repro-
ducing the observation of both period-doubling and period-adding
cascades20,28 when the flow rate of NADH is increased. Subnet-
work 3 is capable of reproducing the experimental observation
of chaotic fluctuations situated between simple periodic oscilla-
tions and bursting oscillations and the corresponding fractal-like
return maps.14,15,21 Thus, it appears that subnetwork 3 has some
resemblance to another simple four-variable model of the PO
reaction.21

As for the structures of the isospike stability diagrams, they
appear distorted compared to those of the original BFSO model.36 In
a previous study36 of the original BFSO model we have shown that
the isospike stability diagrams undergo a “crystallization” process
as the initial concentration of Per(III) is increased. It is interest-
ing to note that one of these diagrams has some resemblance to
the diagram of subnetwork 1 studied here. Unfortunately, there is
no preservation of enzyme in any of the three subnetwork mod-
els, so the total concentration of the enzyme cannot serve as a
parameter for them. Hence, a similar “crystallization” of isospike
diagrams, when the enzyme concentration is increased, cannot be
explored for the three subnetwork models. An interesting discrep-
ancy between the isospike diagrams for the three subnetworks and
those of the original BFSO model involves the rate constant k4,
which determines the constant influx of NAD• and, according to

Sensse et al.,37 may be considered equivalent to the influx of NADH
(determined by the rate constant k12 in Table I). This claim only
seems to hold for subnetwork 1, where an increase of k4 results in
transitions from simple periodic oscillations to still more complex
oscillations and chaos through either period-doubling or period-
adding bifurcations as is also the case for the original BFSO model
when k12 is increased (at least for an enzyme concentration lower
than 2 × 10−6M).36

It should also be mentioned that the subnetworks studied here
deviate from the original BFSO model in that contrary to the original
BFSO model, where quasiperiodic oscillations can be observed for
certain parameters,30,33,49 analogous quasiperiodic behavior has yet
to be detected in the three subnetwork models. The latter is also at
variance with the experimental PO reaction in which various forms
of quasiperiodicity can be found.18,19,30,33,49 It is likely that quasiperi-
odicity is lost or strongly reduced by the simplification of the original
BFSO model.

Finally, we have found that subnetworks 1 and 2 both reveal the
existence of quint points, i.e., very recently reported singular bound-
ary points where five distinct phases of stable oscillatory behavior
meet in isospike diagrams.10,41–43 Evidence for such a quint point
could also be found in recent experimental data at elevated concen-
trations of peroxidase. Thus, overall the three subnetworks display
complex behavior in good correspondence with previous and our
present experimental data. Some of these, e.g. the occurrence of
quint points and the fractal return maps shown in Fig. 6(a), have
yet to be found in the original BFSO model.

We conclude that the isospike stability diagrams have proved
extremely valuable in analyzing and understanding the complex
dynamics of the subnetworks, the original BFSO model, as well as
the experimental PO reaction. Subnetwork 1 has the closest resem-
blance to the original BFSO model both in terms of the bifurcation
structure and the structure of return maps. The other two sub-
networks are structurally different but also reproduce important
observations in the experimental system such as fractal return maps
(subnetwork 3) and the appearance of quint points (subnetwork 2).
Thus, the three subnetwork models may be taken as well repre-
senting significant aspects of the PO reaction. In particular, the
fact that two subnetworks display quint points, which were also
detected experimentally, exposes an intriguing open problem: to
investigate the possibility of detecting the recently reported phe-
nomenon of non-quantum chirality40,43 among the rich realm of
complex behaviors displayed by the PO reaction, its subnetwork
models, and similar (bio)chemical complex systems. Non-quantum
chirality refers to surprising chiral structures observed recently in
the nonlinear oscillators governed by rate equations, not by any
quantum feature.40–43
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