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Abstract
A study of the distribution of spikes in periodic oscillations is reported for an optically injected laser diode proxy, as a 
function of the injected field strength and detuning. A novel and unexpected feature reported here is an abundance of 
overlapping adding-doubling complexification cascades. Two-parameter spikes complexification cascades of the laser proxy 
are found to mimic phenomena also found in a state-of-the-art semiconductor laser model. Such cascades should not be 
difficult to observe experimentally, either in lasers or in other complex oscillators.
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1 Introduction

The investigation of several natural phenomena is based on 
the observation of the temporal behavior of a dynamical 
variable of interest. After cataloguing the possible behaviors, 
the next important task is to catalogue what happens when 
control parameters are varied, namely, to delimit the size and 
the boundaries of the stability phases corresponding to the 
individual behaviors observed. A key feature of time-signals 
is their waveforms, which may be periodic or not. In general, 
nonisomorphic waveforms differ by the number p of spikes, 
i.e., local maxima, that they contain.

During a recent investigation [1] of a cancer growth 
model it was observed that, when two control parameters, 
say � and � , vary simultaneously, the transition boundaries 
between dynamical phases characterized by periodic time-
signals having p spikes per period evolve in a startling 
regular way as depicted schematically in Fig. 1: When � 
varies horizontally, a stability phase with, say, p spikes per 
period, transits sharply along a smooth path into a phase 
with p + 1 spikes. In contrast, vertical variations of � 
eventually lead to three distinct smooth transitions which 

occur at a first phase trifurcation level t1 : the emergence of 
a parabolic-shaped phase characterized by 2p + 1 spikes, 
the sum of the p and p + 1 spikes of its precursor phases. 
This parabolic-shaped phase is flanked by two nonparabolic 
phases characterized by 2p and 2(p + 1) spikes per period, 
as indicated in Fig. 1. By further varying � one eventually 
reaches a second level t2 when new phase trifurcations occur 
at both extremities of the parabolic arc, and so on.

In Fig.  1, all blue parabolic phases are invariably 
characterized by oscillations with an odd number of spikes, 
while the adjacent white non-parabolic phases contain an 
even number of spikes. Parabolic phases arise through 
spike additions, while nonparabolic phases arise from spike 
doublings. So far, the characteristic signature found for this 
regular adding-doubling complexification cascade is that the 
parabolic arcs do not overlap. For instance, in addition to the 
aforementioned cancer model [1], nonoverlapping adding-
doubling cascades were observed subsequently in several 
rather distinct contexts, more recently in Refs. [2–6]. But, 
are overlapping adding-doubling cascades possible? What 
sort of dynamics should be expected when adding-doubling 
cascades overlap?

The aim of the present paper is to report a myriad of 
overlapping adding-doubling complexification cascades of 
spikes discovered in the control parameter space of a laser 
diode proxy for which Lyapunov stability diagrams were 
reported by Li et al. [7]. We find overlapping cascades to 
exist over broad parameter ranges. Since the proxy model 
considered here essentially coincides with a state-of-the-art 
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model of a semiconductor laser with optical injection, we 
expect overlapping adding-doubling cascades of spikes to 
be within reach of experimental observation with existing 
technology.

2  Model Equations

The state-of-the-art rate equation model of a single-mode 
diode laser with monochromatic optical injection and slowly 
varying complex electric field E = x + iy , and population 
inversion n is [8–11]

(1)ẋ = 𝜅 + 𝜔y +
1

2
(x − 𝛼y)n,

(2)ẏ = − 𝜔x +
1

2
(𝛼x + y)n,

(3)ṅ = − 2𝛾n + (1 + 2Bn)
(

1 − x2 − y2
)

,

where the � is the injected field strength, and � is the 
detuning of the injected field from the solitary laser 
frequency. The parameter � is the linewidth enhancement 
factor [12], while � and B are material parameters: � is 
the rescaled damping rate of the so-called relaxation 
oscillations, and B is the rescaled cavity lifetime of photons 
in the laser cavity. The literature already contains � × � 
Lyapunov stability diagrams [9, 10] for the representative 
values B = 0.0295 , � = 0.0973 , and � = 2.6.

A simplified proxy of the above model equations was 
found to have rich Lyapunov stability diagrams [7], with 
an extensive and intricate phase of periodic modes which, 
however, were not yet explored. Such proxy reads:

(4)ẋ = 𝜅 + (x − 𝛼y)z,

(5)ẏ = (𝛼x − 𝜀y)z,

(6)ż = 1 − x2 − y2,

Fig. 1  Schematic unfolding of a nonoverlapping spikes adding-doubling 
complexification cascade, observed when two control parameters � and 
� vary simultaneously. Following a first phase trifurcation at t1 , one finds 
certain parabolic-shaped phases resulting from periodic oscillations 
with an odd number of spikes per period, while their adjacent phases 

have even number of spikes. The vertex of each parabola is a startling 
exceptional boundary point where five distinct oscillation phases meet. 
The further cascading is apparently finite and not especially long. 
Adapted from Ref. [1]
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where �, �, � are real control parameters loosely related to 
the original parameters, and x, y, z mimic the corresponding 
laser variables.

For � = 3 , Li et  al.  [7] discovered remarkable 
accumulation horizons that are similar to the ones 
found for the state-of-the-art model of the laser [9, 10], 
as well as periodicity hubs [13, 14], all due to the self-
organization of the oscillatory modes of the autonomous 
laser oscillator.

In the present work we investigate in detail 
the distribution of periodic oscillations for � = 3 , 
complementing and signif icantly extending the 
results of Li et  al.  [7]. Specifically, we consider how 
sequences of spikes unfold when two parameters are 
varied simultaneously. Such study led to the discovery 
of a large number of strongly overlapping spike-adding 
complexification cascades in isospike stability diagrams, 
which are described in what follows.

3  Isospike Stability Diagrams

Instead of Lyapunov exponents, which are computationally 
demanding to be generated and are only able to 
discriminate periodicity from lack thereof, here we 
use a much more fruitful representation, namely the 
so-called isospike stability diagrams [15–18], illustrated 
in Figs. 2–6. Isospike diagrams perfectly reproduce the 
naive dichotomic classification obtained with Lyapunov 
exponents. However, they are computationally less 
demanding to obtain and, quite significantly, contain 
a significant enrichment: Rather than indiscriminately 
bunching together all periods into a single large phase as 
Lyapunov diagrams do, isospike diagrams discriminate 
the number of spikes (local maxima) per period of each 
individual oscillation. As a quick glance at Figs.  2–6 
unambiguously shows, isospike diagrams present 
detailed cartographic charts illustrating visually in a 

Fig. 2  Comparison of the distribution of spikes, periodic or not, as 
recorded in the variables x, y, z. Colors indicate the number of spikes 
per period of the periodic oscillations, black denotes phases of nonpe-
riodic spiking. The white boxes on the top row are shown magnified 
on the bottom row. Note reflection symmetry about � = 0 , apart from 

the multistability. Bottom row: Boxes A,B,C,D are shown magnified 
in Fig.  3. The phase distributions seen in these diagrams should be 
compared with equivalent ones obtained for the state-of-the-art model 
[9, 10]
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convenient way how complex waveforms evolve when two 
parameters are tuned simultaneously. For a recent survey 
and comparison of distinct representations of stability 
diagrams as well as a description about how we compute 
such diagrams please consult Ref.  [17] and references 
therein.

As mentioned, a classification of stable oscillations 
in terms of spikes was originally introduced during a 
study of a three-cell population model of cancer [1], 
when spikes adding-doubling cascades were discovered 
to obey the regular nonoverlapping scheme presented in 
Fig. 1. Subsequently, adding-doubling cascades were also 
found useful to describe a large number of rather distinct 
systems, most recently in Refs. [2–6]. So far, the common 
characteristic observed in all spikes adding-doubling 
cascades is the presence of the nonoverlapping parabolic 
arcs shown in Fig. 1. As noted, complementing these earlier 
works, the purpose of the present paper is to report the 

observation of a number of rather intricate spikes adding-
doubling cascades for which the parabolic arcs overlap 
comparatively early and extensively.

The equations of motion, Eqs. (4)-(6), were integrated 
using a standard fourth-order Runge–Kutta algorithm with 
fixed integration step h = 0.001 , starting always from the same 
arbitrarily chosen initial condition (x, y, z) = (0.1, 0.2, 0.3) . 
Bitmaps were computed by ”following the attractor” [17, 
18] horizontally from left to right. Below, individual stability 
diagrams display the classification of oscillations for 
parameter grids containing 600 × 600 equally spaced points 
in Figs. 2, 3 and 5, and 1200 × 1200 points in Figs. 4 and 6.

Before proceeding, recall that in flows the period varies 
continuously with parameters while the number of spikes 
per period varies discontinuously. This means that although 
the addition of spikes certainly changes waveforms, in 
no way it affects the smooth and continuous variation of 
their periods. Moreover, the oscillation period is always 

Fig. 3  Magnification of boxes A,B,C,D from Fig. 2 showing evidence 
of overlapping adding-doubling cascades in the y variable. Numbers 
refer to the number of spikes per period. After initially following 
the sequence illustrated in Fig.  1, the parabolic arcs begin to over-

lap strongly. Additional overlapping sequences exist in all panels, at 
smaller and smaller scales (not shown here). Boxes E,F,G are magni-
fied in Fig. 4. Box H is magnified in Fig. 5

Fig. 4  Typical examples of the strong overlap of parabolic arcs 
observed in y spikes. Numbers refer to the number of spikes per 
period, with colors recycled modulo 17. Note conspicuous signs of 
multistability, particularly in the intricate structure in panel G, and 

the asymmetries of the elliptic rings embedded in the black phases of 
chaos. Each panel records the oscillatory behavior for a mesh contain-
ing 1200 × 1200 = 1.44 × 106 equally spaced parameter points
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the same, independently of the dynamical variable used 
to measure it and independently of the number of spikes 
that the individual variables may contain. Accordingly, the 
parabolic arcs in isospike diagrams involve spike-adding, not 
period-adding, the widespread use of the latter misnomer 
notwithstanding.

4  Results

The top row of Fig. 2 shows three stability diagrams obtained 
by counting spikes for the three independent variables 
x, y, z of the laser proxy. Such diagrams supply important 
information regarding the spikes distribution observed in the 
time-series of x, y, and z. Visually, they compare well with 
the two-color Lyapunov diagram computed by Li et al. [7].

In Fig. 2, notice that the inner distribution of spikes 
within the set U, union of all phases of periodic oscillations, 
may depend of the variable used to count the spikes, but not 
the shape or the boundary of U. Furthermore, for a fixed 
set of parameters, the period measured for any variable of 
the model is always the same, independently of the number 
of spikes that such variable may have. Additional details 
revealed by Fig. 2 are as follows.

The bottom row in Fig. 2 shows stability diagrams with 
white boxes focusing on some arbitrarily selected regions 
where the unfolding of phenomena of interest to us are easy 
to identify on the scales of the figure. Such boxes illustrate 
stability phases where the continuous evolution of the 
number of spikes is interrupted abruptly by the emergence of 
new phases with a number of spikes differing by 1 spike. For 
better visualization, boxes A,B,C,D are shown magnified in 
Fig. 3, while boxes E,F,G that Fig. 3 contains are magnified 
in Fig. 4.

Figures 3 and 4 show clearly that, although distorted 
to some extent, the adding-doubling complexification 
cascades follow initially the nonoverlapping scheme of 
Fig. 1. However, the parabolic arcs that they contain are 
either so close or so wide that the arcs soon start to overlap 
considerably in distinct ways, resulting in extended regions 
where additional multistability is present. Of particular 
interest in Fig. 3 are the boxes G and H, where complicated 
and symmetric self-organizations of spikes are found. In 
these parameter windows, triply interconnected phases 
induce an isomorphic repetition of the adding-doubling 
cascades.

So far, the emphasis was mostly on windows for a 
specific model variable, namely y. But, should one expect 
phenomena detected in y to be also detectable in other 
variables of the model? The answer is provided by Fig. 5 
where one clearly sees this not to be the case. Two-parameter 
sections of multiparameter control spaces behave similarly 
to two-variable projections of multidimensional attractors, 
where each projection has its own characteristics and gives a 
different view of the attractor. Analogously, two-dimensional 
parameter sections reveal distinct features of the control 
parameter surface because, in general, such surface does 
not display a high degree of symmetry.

Figure 6 shows a most surprising self-organization of 
oscillation spikes that, while easy to grasp visually from the 
several panels, is quite difficult to summarize briefly with 
words. The ”double-shrimp” seen in Fig. 6a involves a quite 
unusual and complex shrimp [17, 19–21], with ”distorted” 
legs and a proliferation of spikes which self-organize in 
unusual shapes. While shrimps normally have just two 
regions along which chaos and doublings (of spikes in flows, 
and of periods in maps) occur, the stability island in Fig. 6c 
has a shape similar to a shrimp [17, 19–21], but, surprisingly, 

Fig. 5  Isospike phases recorded for x, y, and z. There is a ”parameter 
bubbling” in y while spikes of x and z vary smoothly. For any set of 
parameters, the period measured for the three variables is always the 
same, independently of local variations in the number of spikes. For 

y, the ”finger phase” combining 16, 17, and 18 spikes, seen on the 
lower-left corner, has the same size and shape as the corresponding 
phases in x and z, with 14 and 10 spikes, respectively. Note the pres-
ence of extended regions of multistability
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having three major chaos and doubling regions. Figure 6d 
illustrates the complicated and beautiful way in which spikes 
auto-organize. It would interesting to investigate how such 
mosaic of phases evolve when � is changed.

In 1984 Bier and Bountis discussed an interesting 
phenomenon that they called ”period-bubbling” in bifurcation 
diagrams of maps, and for a driven Duffing equation [22]. 
Their bubbling phenomenon is not to be confused with 

Fig. 6  Successive magnifications of complex shrimps [17, 19–21] 
showing parameter ”bubbling” in the y variable. Numbers refer to the 
number of spikes per period, with colors recycled modulo 17. The 
larger shrimp seen in panels (a) and (c) has a subtly complex inner 
distribution of spikes, with three major regions where spikes cascad-
ing ending in phases of chaos occur. In (c), the white box highlights 
the subdivision of the upper major leg, shown magnified in (d). The 

spikes unfolding is considerably more complicated than the scheme in 
Fig. 1. Panel (d) shows a grid with 2400 × 2400 = 5.76 × 106 param-
eter points. In (d), note the presence of unusually large number of 
spikes per period. Further adding-doubling complexification routes 
with an even larger number of spikes occur in the multicolored semir-
ings embedded in the black phase of chaos
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the bubbling discussed subsequently in 1994 by Ashwin 
et al. [23]. The phenomena underlying the structure seen in the 
central panels in Figs. 5 and 6 are a sort of multidimensional 
bubbling, this time recorded exclusively in the control 
parameter space, similar to the re-merging that Bier and 
Bountis saw in the mixed space blending together variables 
and parameters. Depending on the specific two-parameter 
section of the multiparametric surface controlling the 
dynamics, one may see isospike cascades with a finite number 
of bubbles, or none at all. Manifestly, spikes cascades help to 
understand the intricacies underlying the control parameter 
surfaces of dynamical systems.

In all diagrams above, it is important to emphasize that 
the inner spikes distribution of the set U, representing the 
union of all phases of periodic oscillations, may depend 
on the variable used to count the spikes. However, the 
shape as well as the boundary of U does not depend on the 
variable used to count them. Furthermore, for any fixed set 
of parameters, the value of the period measured for each 
variable of the model is always the same, independently 
of the number of spikes that the variables may have. This 
fact assures that phases of nonperiodic oscillations (chaos) 
have the same shape and boundaries both in Lyapunov and 
isospike diagrams.

5  Conclusions and Outlook

This work provides a wide-ranging classifications of self-
organized periodicities of various sorts as more than one 
control parameter is varied. So far, rhythmic, pulsating, 
or periodic oscillations in nonlinear oscillators have 
seldom been systematically followed up in any general 
way. Fortunately, high-performance, high-throughput 
computation, outperforming by wide margins everything 
previously available, allows the production of invaluable 
cartographic charts displaying detailed informations about 
complex systems, as illustrated by Figs. 2–6. Since the 
proxy model considered here essentially coincides with the 
state-of-the-art model of a semiconductor laser with optical 
injection, it is now reasonable to expect overlapping adding-
doubling complexification cascades of spikes to occur in 
both models and to be experimentally accessible.

The main message of this paper is to draw attention 
to the fact that, in the same way that individual three-
dimensional attractors look quite different when projected 
into two-dimensional sections of the space of variables, the 
diagrams above show two-dimensional parameter sections 
to display very distinct but nevertheless surprisingly regular 
aspects of the multidimensional control parameter surface 
underlying the equations of motion. The stability diagrams 
reported above provide an useful survey and classification 
of interesting facts in much need of being marshaled and 

brought to notice to experimentalists, and not among laser 
specialists only.

Clearly, it would be also interesting to explore what 
happens to the self-organized isospike phases described 
above when the parameter � is also allowed to vary, and 
to check how many features reported here are also present 
in the state-of-the-art model of a semiconductor laser 
with optical injection. Such questions, however, imply 
performing extensive computations and will be left to 
another opportunity. Starting Fig. 1 with p+1 and p (instead 
of p and p+1), produces a chiral image of the cascade. 
These enantiomers offer opportunities to investigate hitherto 
unsuspected properties of purely classical oscillators.
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