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Abstract . — The transport of 2D powder mixtures is investigated using a model recently
praposed by us to describe the fluidization of granular media. We simulate the behaviour
of particles placed on a belt having vertical as well as horizontal vibrations. Using Melecular
Dynamics we calculate the density field and velocity distributions of the particles and investigate
the angular dependence of momentum transfer. We investigate these properties as functions of
{riction parameters and present predictions that might be checked experimentally.

1. Imtroduction.

The mechanical properties of granular materials like sand or powder are quite astonishing
and have been the subject of a great interest for many years. Well-known examples of such
intriguing behaviour are heap formation under vibration [1 — 6], density waves emitted from
outlets [7] as well as the so-called “Brazil nut” segregation [8 — 11]. All these effects seem to
eventually originate in the ability of these materials to form a hybrid state betwesn a fluid and
a solid [12 - 14]. Numerous attempts have been made to formalize and qualify the rheology of
gramular media [15 ~ 20], but the knowledge of the physical principles governing the behaviour
of these materials is still far from being satisfactory. Moreover, many artifacts as dilatancy,
arching, segregation, ete., conspire to ereate hystereses and instabilities of experimental re-
sults, making their reproducibility and control difficult {13, 14, 21 — 23]. The development of
analytical theories is also complicated because the boundary conditions and the distzibution
functions for such materials are poorly understood [i4, 22, 24]. For these reasons ideally suited
tools to investigate granular media are computer simulational techniques {19, 20, 25 — 32].
In a previous paper [31] we presented a model reproducing a recent experiment on Avidization
of a two-dimensional packing submitted to vertical vibrations [33]. A more elaborated version
of the model [32] was then applied to investigate various types of convection cells due, either
to the existence of walls or to spatial modulations in the amplitude of the vibration. The
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purpose of this paper is to report on the application of our previously proposed model [32] to
simulate the behaviour of two-dimensional granular material on a flat vibrating bottom and
periodic boundary conditions in the horizontal direction. The harmonic vibrations are directed
at a given angle with respect to the direction of gravity. This kind of vibrating excitation is
used technologically in special conveyor belts that are used for instance in the pharmaceutical
industry [34]. These vibrating conveyor belts as a means of transportation are in fact very
typical for granular media, since neither solids nor fluids can be moved in this way.

The purpose of our simulations is to learn more about the microscopic nature of fluidization,
and how the transport of the beads occurs, i.e. how do velocity profiles depend on the shaking
and on the friction coefficients involved [34]. Such basic questions are fundamental for the
understanding of many interesting and elusive phenomena displayed by granular media under
more constrained conditions, either by external walls or by internal forces.

2. The model.

The system we chose to study is perhaps one of the simplest one: a collection of N spherical
particles of different radii sitting on a horizontal segment of a belt of width L with periodic
boundary conditions in the horizontal direction. This segment undergoes harmonic oscillations
in both horizontal (z) and vertical (z) directions according to

z(1) = Agsin(2x ft} (la}

2(t) = A, sin(27 f1) | (1b)

where f is the frequency and A, and A, are & and z amplitudes, respectively. The correspond-
ing angle of the composed oscillation is & = arctan(A4,/4;).

Our model includes the fact that dissipation of energy occurs wia inelastic interparticle
collisions as well as via collisions of the particles with the walls. Obviously, the real molecular
mechanism of energy dissipation is very complicated and can not be treated on the same time
and size scales as the collisions between beads. Therefore we approximate this mechanism i a
phenomenological manner by considering dissipation due to inelasticity of the collisions, as well
as dissipation due to shear friction. Thus, in our present strmulations the beads are subjected
to a 10 m/s? gravitational acceleration and three kinds of forces which act during collisions
between a pair of beads i and j. The first is an elastic restoration force

i 1 Tij
£ =Y(rg | —5(di+ ) )

where d; is the diameter of the particle i, ¥ the Young modulus [11, 29], and ry points from
particle 1 to j. The second force steems from dissipation due to the inelasticity of the collision
. -
£5), = —ymi(vy v V{I_ H..w_m ) (3)
ij
where 7 is a phenomenological dissipation coefficient, m; o d? the mass of the ith bead and
vij = v; — vj the relative velocity. Finally, the third force is a shear friction intended to
indirectly mimic the effect of static friction

i 21
£5) . = ~yemivy .r:_i_,.%_sm . Cy

Ne7 TWO-DIMENSIONAL POWDER TRANSPORT ON A VIBRATING BELT 1391

In this expression 7, is the shear friction ccefficient and &; = (—rf, rf) is the vector ry; rotated
by 90°. As compared fo other modelizations of the forces acting between grains [11, 26, 28, 29]
our eguations (2-4) are simpler since we neglect Conlomb friction and the rotation of particles;
we did this on purpose in order to omit, in our opinion, unimportant fit parameters.

When a particle collides with the belt the same forces act as if it would have encountered
another particle of diameter {d) at the collision point. All the constants characterizing particle-
wall collisions have been assumed to be the same as those for interparticle collisions. Our
calculations were carried out for a uniform mixture of spherical beads. The bead diameters
were chosen with uniform probability from the interval (0.5 mm, 1.5 mm) and the average
diameter was (d) = 1 mm. The density of all beads was assumed to be the same.

We apply a Molecular Dynamics (MD) technique [35, 36}, as has been done in previous
works {31, 32]. The equations of motion have heen solved numerically by using classical
predictor-corrector methods with a time step A = (2000f)~1, We started simulations from
a random distribution of beads, letting them fall freely under gravity without shaking at the
beginning. The system was allowed to evolve until the averaged squared velocity per bead was
smaller than 10~% m?/s?. After that we simulated the shaking of the system by assuming the
belt to undergo harmonic oscillations according to equation (1) above. At least 9 x 10* initial
time-steps were discarded in erder to reach a steady state and averages were evaluated from
at least 9 x 10? subsequent time-steps. All our simulations were made with N. = 200 and the
length of the segment representing the belt was L = 20{d). Tests done with ¥ and L half as
large give qulitatively similar results.

3. Resulis and discussion.

In all calculations the value of the Young modulus was kept constant ¥ = 103g{m)/{d}, where
{m) is the mass of a grain of diameter {d}. A relatively small value of ¥ was chosen to allow
for the use of & more conventent time-step for the numerical integration. We believe this not to
be critical for the results of the simulation. Indeed, some auxiliary calculations have indicated
that the Young modulus has only a weak influence on the final results as long as iis value
remains larger than Y > 500g{m}/{d}.

Before starting our discussion, let us first emphasize, that the movement of the belt in the
vertical z direction creates an elastic restoration force (see Eq. (2)), acting against gravity. No
similar force is associated to the movement of the belt in the z-direction. The particles feel
this movernent only vie the shear friction term (Eq. (4)) in the equation of motion. Thus, the
value of the coefficient ¥, controls the efficiency of the bead-transport along the belt.

The behaviour of the system was examined by plotting snapshots of the generated configu-
rations and the trajectories of the particles. We have also computed the local number densities
{p(2}) and transport velocities, {v,{#)) as functions of the distance z measured from the actual
position of the vibrating belt, with a grid size {d). Moreover, we evaluated the total average
velocity per particle, V. This quantity gives the average speed (flux) of the beads along the
belt. In order to check if the steady state has been reached, we have examined the velocity
profiles and the total velocities V,. When these quantities remained practically unchanged,
we started to monitor the data and to calculate averages over time. Note that the periodic
boundary conditions help to reach the steady state faster. ’

Figure 1 presents the total average velocity per particle V; as a function of the vibration
frequency, evaluated for different values of the parameters eharacterizing the system, whereas
figures 2 and 3 show local system properties: in figure 2 we have a comparison of local densities
{p(2)) and in figure 3, of local horizontal velocities {vz(2)}.
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Fig. 1. — a) The flux ¥z as a function of the frequency f. The calculations were carried out for

5 = v = 50y, A = {d}, @ = /3 (dash-dotted line) a = x/4 (solid line} and & = x/6 (short-dashed
line). b) The velocity Vz against frequency for v = vs = ilg, & = x/4 and for A, = 1.5{(d} (dash-
dotted line}, A; = {d) (solid }ine) and A; = 0.5{d) (short-dashed line). The points were evalnated
for A; = {d), o = «/4 and for y = 0, 7= = 50g (triangles), v = ¥ = 10g (crosses) and 4 = 50g,
vs = 100y {squares). c) The dependence of Vi on the shear friction coefficient, evaluated for f = 50
Hz (sclid line) and for f = 20 Hz (dashed line). The remaining parameters were: a = w4, Ax = {d}
and v = 50g.

Depending on the applied vibrations, the system can exhibit a solid-like, or a liquid-like
behaviour. When the excitation exceeds some level, the system starts to flow. A global

characteristic of this flow is the velocity V. We thus begin with the discussion of the influence

of model parameters an the velocity V; - see figure 1.
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Fig. 2. — Local number densities. a} Dependence on frequency. The subsequent lines were evaluated
for the frequencies: 10Hz (solid lines), 20 Hz (dashed lines), 60 Hz (dash-dotted lines) and 80 Hz
{dotted line). The values of the parameters were: 7 = 7a = 50g and o = 7f4, A; = {d}). b)
Dependence on the angle of vibration. The subsequent curves were calculated for & = w (dotted
line}, 7/3 {dash-dotted line}, w/4 (solid line} and x/6 (the short-dashed line). In all cases f = 60
Hz, A; = {d) and 7 = 7s = 30g. c) Dependence on the friction coefficients. The short-dashed line:
v = 45 = 10g, the dash-dotted line: v = 0, s = 50g and the solid Hne: v = 50g and vs = 100g. In all
cases o = 7 /4, A; = {d} and f =80 Hz.

All the curves of V, versus f presented in figures 1a and 1b exhibit similar behaviour: after a
rather rapid jump the flux increases monotonically with the frequency and at large frequencies
seems to grow linearly. Interesting is, however, that in all cases the beads start to flow at about
the same frequency of 16 Hz, independent of the angle o. In addition, for the investigated range
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Fig. 3. — Average velocities {vz(z)} plotted against z. The calculations were carried out for Ez.u same
parameters the local densities given in figure 2 and the abbreviations of the curves are identical to

those in figure 2.

of v and v, > g, the transition from non-flow to flow seems to be independent of the friction
coefficients. Obviously, for 7, = 0 there is no z-component momenturm wamumw.w. from 25. belt
to the beads and the fow stops (for small values of 7, < g the statistics of 5 is poor). m,.mu.:.o
1c shows the dependence of ¥, on the shear friction nomﬁnmgﬁ. 7¥s, for two a_m.muoa.ﬁ frequencies,
namely 20 and 50 Hz. Up to -, = 10g the flux increases rapidly, but a further increase of 7.
only leads to a very gentle increase of Vi. .

For A; = (d) = 1 mm the frequency of the vibration at which .gm flow begins corresponds
to a coefficient [2] T = 4#? f24, /g close to 1. For a higher amplitude, A, = 1.5(d}, the flow
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still starts at about f = 16 Hz (I ~ 1.5 at this frequency) and at f = 15 Hz the velocity
V; is almost zero. When the amplitude is equal to 0.5{d), the flow begins at a slightly higher
frequency of about 18 Hz, corresponding to I' & 0.8, We should stress, however, that errors
are rather big and it is difficult to evaluate the onset of the flow accurately.

Close to the belt the local density is very small. Only at low frequency the local number
density shows a plateau extending up to larger z values, which ends, almost abruptly at a
distance z = 9{d) from the vibrating belt (see Fig. 2a). When the frequency increases, the
maximum of the local density decreases and the whole density profile becomes more smeared
out. The tails observed at large heights in figure 2 indicate the existence of particles in a
gas-like state above the free surface of the packing, It is interesting, that the density profile
remains almost unchanged when the angle of vibrations changes - all the curves given in figure
2b collapse and the difference between them is smaller than the statistical errors. ‘This means
that the vertical component of the vibration determines almost completely the vertical density
of the beads, and that the influence of the parallel component is quite small. When the friction
coefficients decrease, the layer of beads becomes more smeared out (cf. Fig. 2¢). Only very
close to the belt the profiles seem independent of the friction. It is difficult, however, to predict
how the changes of the ratio of both friction coefficients exactly influences the density profiles.

The plots of the velocity profiles {v.(2)}, i.e. the average velocity per particle, carresponding
to the already discussed density profiles are displayed in figure 3. They all exhibit a well-
developed plateau, showing that almost all particles move at the same speed as one would
expect. The decrease of the velocity directly at the wall is due obviously to wall-particle
collisions. The decrease at large heights, corresponding to the small densities, is attributed
to the fact that steady state is probably not yet reached at the highest layers, since for those
particles the transfer of momentum is much less efficient due to their much rarer collisions.
We have checked this by also starting the simulation with all particles moving at a higher
initial speed. Then the velocity of the particles decreases with time until reaching the steady
state. The dashed line in figure 3c is an example of what happens: the tail at large heights
disappears. Obviocusly, the velocity increases with increasing frequency and decreasing angle
of vibrations. For 75 = 0 the velocity (1(2)) is zero, as expected, but for v, > 50g the velocity
profile depends only very weakly on the shear friction coefficient (cf. Fig. 3c).

During real experiments it is difficult to monitor the motion of the individual particles. This,
however, can be quite easily investigated in computer simulations. In figure 4 we display the
trajectories of the molecules during one cycle of shaking. Examples of snapshots of particle
configurations, evaluated at the begining of the vibrational cycle are given in figure 5.

When the frequency is low enough (see Figs. 4a} all the beads move synchroncusly along
elliptic trajectories. The tilting angle of these trajectories increases with the angle of vibrations.
When the shear {friction coefficient v, becomes smaller, the tilting angle tends to 7/2, provided
that the vibration frequency is low enough - ¢f. figure 4b. When the beads start to flow, the
character of their trajectories changes: at not too high frequencies they move along sinusoidal
curves (Fig. 4c). With increasing frequency, the trajectories become flater and at the highest
frequencies we observe a stream of particles flowing together (Fig. 4d). A decrease of the
angle of vibrations makes this stream-like motion more pronounced. A similar effect is caused
by increasing the friction coefficients. If, however, the shear friction coefficient ¥s is zero, the
beads move essentially vertically - see figure 4e.

At quite low frequencies, the whole block of the beads moves together, following the move-
ment of the belt. An example of a snapshot of such a configuration is given in figure 5a. Quite
similar snapshots are obtained at that frequency for other values of the friction coefficients.
Obviously, the angle of vibration influences the direction of the instant velocities. When the
frequency increases, we first observe a “fluidization” at the upper surface of the packing. Some
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Fig. 4. — The trajectories of the particles during 2 single cycle of the vibration in the steady state.’

The trajectory of each particle is
A, ={d), and a) a =7/, f =10 Hz and v =75 = 50g; b) a = 7/4,
nvQﬂﬂ\m;ﬁﬂmommwﬁmqﬂ.«mﬂmomm&Qﬂﬁ\#.%ﬂmcﬁu\«nﬁﬂmcﬁmvQHﬁ\er.

v = 50g and ¥ = 0; The horizontal line denotes the average belé position.

f=10 Hz v =505 and vs = ¢

surface particles jump, and sometimes these jumps are big. With further increase of the fre
quency the surface fluidization becomes more propounced, the average density of the packin
decreases (cf. also the density profiles given in Fig. 2), manifesting itself by the presence o

plotted after every 50 time-steps. The plots were obtained for

= §0 Hz
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.m;m. 5. — Snapshots of the configurations of particles. The dotted horizontal lines denote the max-
imum and the minimum position of the belt, ard the solid line is its average position. The circles
w..mw.wmmﬁ:. the particles and the linear segments beginning at the centres of particles indicate their
Emgunmmm.oam velocities. All snapshots were made at the beginning of the vibrational cycle. The plots
were obtained for A: = {d} and a} @ = x/3, f = 10 Hz v = s = 50¢; b) & = x/6, f = 40 Hz
Y=1=10gcle=7/4, f=100Hz y= v =50g; d) e =x/4, f =100 Hz v = g and ”?Hmem..

holes in the packing (see Fig. 5b). it is difficult to see this on a single picture, but observing
step by memm the generated snapshots, we were able to see denser regions, Eoiwm through the
system. This phenomenon is more proncunced immediately after starting to vibrate, before a
steady state is reached, and corresponds to the occurence of density waves in the mwm”ﬁma.

For frequencies usually higher than 60 Hz a big void develops at the bottom of the container
wu.m E.Eoi. no molecules are present within the strip [—A;, A,] (see Fig. 5¢). The presence of
ﬁ:m big void directly at the vibrating belt is very typical at higher frequencies. At the same
time, when the friction coefficients are larger, the layer becomes more compact. For lower
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values of the friction coefficients, however, the average density of the layer decreases (see Fig.
5d). Obviously, these faatures can also be identified in the plots of the local densities, given in
figure 2.

We conducted 2 second series of numerical experiments to check how a circular obstacle
inserted into the system influences the movement of the beads. To this end, a fixed circular
body non interacting with the vibrating beit, was inserted at (z = L/2, 2 = A;). The
diameter of this obstacle was changed from dy = 0.1(d) to dy = 2.5(d). All the parameters
characterizing the interactions of the obstacle with the beads were the same as in the case of
bead-bead interactions. Note that due to the periodic boundary conditions, the obstacle in
repeated along the belt,
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Fig. 6. — Dependence of the velocity Vz on the diameter do of a circular object. The calculations
were carried ont for A; = {d), & = 7/4, v = 7 = 50g and f = 80 Hz (solid line) and f = 20 Hz
(dashed line}.

Even the presence of a rather small obstacle rapidly slows down the flow, This is illustrated in-

figure 6 where one sees the fluxasa function of d, for 20 and 30 Hz. In figure 7 we have presented
the trajectories (Fig. Ta) and a snapshot (Fig. 7b) of the beads for an obstacle of dy = 1.5(d).
Without any obstacle, the picture of the flow is that given in figure 4d. When the obstacle is
inserted, the character of the motion of particles changes and the trajectories displayed in figure

71 become rather like the trajectories displayed in figure 4c, le. corresponding to significantly
Jower frequencies. Also at f = 20 Hz the character of the motion is changed - cf. figures 7c-

and 4c. Despite the big changes in the particle trajectories, even a significant chstacle does
not cause turbulence in the flow at higher frequencies. We cannot treat the obstacle as only
locally influencing the flow, because its initially very local effect spreads to the entire system,
leading to completely different trajectories as compared to a non-perturbed system. This point

is especially visible by comparing figures Tc and 4c.

We have investigated granular media on a vibrating conveyor belt which constitutes a means-

of transportation thai is characteristic for granular media. In our simulations we used a very
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Fig. 7. — Trajectories (a and ¢} and snapshkot {b} of the particles flowing in the presence of an obstacle.
In all cases Ay = {d), a =x/4, do = 1.5{d}, ¥y = vs = 50g. In (a) and (b) the frequency was 80 Iz,
whereas in (c) 20 Hz. The obstacle of diameter do/(d} = 1.5 is indicated by a circle.

simplified model which only takes intc account dissipation and shear friction but we think
that these ingredients are enough to grasp the essential features of the granular flow. We
found a rather sharp frequency threshold below which the material does not move. Above
this threshold a characteristic density profile is built up which is, however, independent on the
horizontal vibration of the belt. This later one determines the average velocity of the material.
The shear friction coefficient only plays a role at small velocities. Any small, fixed obstacle
causes long range disturbances in the whole flow patterns.

.ﬁ.m have presented predictions that could rather easily be checked experimentally. The two
friction .vE.wEmﬁmHm v and 7, are at this stage phenomenological since the detailed microscopic
mechanisms are not known. For this reason we believe that the neglect of Coulomb friction
static friction, the rotation and shapes of particles etc. are not so relevant at this stage. Hm
g.wocE of course be interesting to include these effects as well as to perform three dimensional
simulations in order to check the validity of our model. In addition, the effect of more compli-
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cated forms of periodic vibrations is also of interest. We hope to report on these effects in the
near future.
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