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Abstract. Based on the two-dimensional WKB model, an equation is derived from which 
the non-relativistic quasi-Landau energy spectrum of hydrogen-like atoms may be easily 
obtained. In addition, we discuss the solution of radial equations in the WKB approximation 
and its relation with models recently used to fit experimental data. 

The two-dimensional WKB model (Edmonds 1970, Starace 1973, Garstang 1977) has 
been very useful in the interpretation of experimental data concerning the quasi- 
Landau spectrum of hydrogen-like atoms. Although it is relatively crude, the success 
of the model is evident from work published in recent years (Fonck et a1 1978, 1980, 
Economou et a1 1978, Castro et a1 1980, Gay et a1 1980, Delande and Gay 1981a, b, 
Kara and McDowell 1981, Clark and Taylor 1980, 1982, Ferrante et a1 1982). The 
model consists basically of studying the complicated motion of a spinless particle of 
mass M in combined Coulomb and magnetic fields through the central potential 

qt rt 
P P  

V ( p )  = --+7+ tp2 

where r 2 0 and q and t are positive quantities. More specifically, t = M w 2 / 8 ,  q = e2Jt 
and r = h2TJ2Mt, where w = eBJMc is the cyclotron frequency and T is a known 
function of the magnetic quantum number m. The notation of the present work is 
consistent with that of Gallas and O’Connell (1982a, b); for further details see the 
review article of Garstang (1977) and the recent work of Gay (1980) and Rau (1980). 

In some of the previously mentioned works (Fonck et a1 1978, 1980, Economou 
et a1 1978, Gay et a1 1980, Delande and Gay 1981a, b) the quasi-Landau spectrum 
was obtained numerically from the first-order WKB quantisation rule, namely from 
the equation 

where p = (E -Smhw)/t, E being the energy of the electron, and p1  < p z  the two real 
and non-negative roots of 

(3) -p4 + p p 2  + qp - r = (P - p1)(p2 - p ) (p2  - 2xp + Y )  = 0. 
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In the present letter we show that the integral in equation (2)  can be analytically 
evaluated giving a transcendental equation, in terms of complete elliptic integrals, 
from which the quantised spectrum may be easily obtained. 

We proceed by introducing the convenient definition 

which allows the integral in equation (2) to be written as 

Furthermore, from the identity 

which is obtair,ed by a trivial integration by parts of the left-hand side of equation 
(6), it follows that 

(7) 

(8) 

I = 13 + iqI0 - rI-1 

I =ipIl+sqIo-rI-l. 3 

Combining equations ( 5 )  and (7), we therefore obtain 

The analytical evaluation of 11, Io and I-1 depends on the quadratic polynomial 
in equation (3). For physically meaningful energies such that the discriminant D = 
X 2  - Y 6 0 (or equivalently, for energies E s V, where V, is the relative minimum 
of V ( p )  in the negative p axis (see Gallas and O’Connell 1982b)) one has 

p 2 - 2 X p +  Y = ( p - b ) * + U Z .  

Calling 

A’= ( p 2 - b ) 2 + u 2  B 2  = (p1 - b ) ’ + u 2  and k 2  = [(pl -p2)2- (A -B)’ ] /4AB 

we find 

Io = 2gK(k) (9) 

I 1 = ~ [ 2 ( p i A  -pzB)K(k)+(A  +B)(pz-pi)n(a?i ,  k)l  (10) A - B  

where 

g = (AB)-’/’ 

and K ( k )  and n(a2, k )  are the complete elliptic integrals of the first and third kinds, 
respectively (Byrd and Friedman 1975). For D > 0 (E > V,) p 2 -  2Xp + Y = 
( p  - c ) @  - d )  and it follows (assuming d C c < 0)  

2 = - (A - B)’/4AB a2 = -biA - p ~ B ) ~ / 4 p i p z A B  

Io = g K ( k  1 (12) 
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(14) 

where now 

Observe that the spacing between the quasi-Landau resonances is given by dE/dn = 

From the equations above one sees that the numerical evaluation of I is reduced 
to the evaluation of just K ( k )  and ] [ I (cx’ ,  k ) .  This is indeed a trivial task and, with 
existing algorithms (e.g. Carlson 1979), may be easily performed even on a program- 
mable pocket calculator. For the case r = 0 (corresponding to T = 0) one finds p1  = 0 
and, therefore, I-1 need not be evaluated since the last term on the right-hand-side 
of equation (8) vanishes. For the particular case r = 0 we observe that Akimoto and 
Hasegawa (1967) also evaluated the integral I. However, their results do not agree 
with ours. In fact, we have previously shown that their results for the spacing are 
incorrect (Gallas and O’Connell1982a). The correctness of our equations was checked 
by numerically integrating 11, Io and I-1 for non-trivial values of p ,  q and r. 

While evaluating the analytical expressions it was noted that the de facto condition 
for the validity of equations (9)-(11) is A’ > 0 and B 2  > 0 rather than D G 0, as claimed 
in the handbook of elliptic integrals (Byrd and Friedman 1975). This allows one to 
use the integrals well out of the intervals defined by Byrd and Friedman. 

Before proceeding we would like to discuss briefly the solution of radial equations 
in the WKB approximation. It is well known, though not widely so, that when applying 
the WKB approximation to radial equations some care is needed. As pointed out by 
Langer (1937), the quantisation condition for one-dimensional problems is derived 
under the assumption that the eigenfunctions go to zero as one approaches *CO. For 
a radial equation, on the other hand, the solutions approach zero for r + 0 and r + CO. 

Therefore, if one wants to apply the one-dimensional WKB quantisation rule, derived 
for - m i x  <CO, to a radial problem, defined in O s r  < CO, one should map the 
semi-infinite into an infinite interval. To this end Langer used the mapping x = In r. 
The effect of the mapping is to introduce corrections AV in the potential. In this 
way one easily obtains the celebrated correction I(I+ l ) / r 2 +  1(1 + l ) / r 2  + 1/4r2 = 
(I +$)’ / r2  for the hydrogen atom. However, it is clear that the choice of the mapping 
function is arbitrary. Unfortunately, as shown by Adams and Miller (1977), different 
choices of mapping function produce different corrections AV. This means that by 
properly choosing the mapping one could, in principle, perform any desired ‘correction’ 
AV to the potential. One way out of the dilemma is the Adams-Miller conjecture: 
the mapping function, and therefore the correction AV, should be chosen such that 
the correct quantum mechanical result is obtained if the potential V is set to zero. 
For the semi-infinite interval this criterion selects the Langer transformation x = In r 
uniquely. By Langer-transforming the radial equation with the potential of equation 
(l), one sees that the WKB approximation requires T = m 2 .  This was the choice of 
Akimoto and Hasegawa (1967) and of Fonck et a1 (1980). In the absence of the ionic 
core, i.e. f.or q = 0 in equation (l), it is easy to verify that the eigen-energies from 
equation (2) are precisely the spinless Landau levels: 

.rrhw/(211). 

E = [n + f ( m  + Iml+ 1)lhw. (15) 
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For B = 0, the opposite limit, equation (2) gives 

-2E = (n  + T1’2 + $ - 2 ,  (16) 

The half-integer radial quantum number of equation (16) for T = m 2  led Gay et al 
(1980) to use T=(lmi+$)2 to obtain ‘the right low-field diamagnetic Coulomb 
behaviour’. In the field-free limit, this replacement produces a quasi-hydrogenic 
spectrum given by 

- 2 E = ( n + l ~ l + l ) - ~  (17) 

with lml playing the role of the quantum number 1 (of the field-free problem in 
spherical coordinates). By taking T = ( m  +i)2 Economou et a1 (1978) claimed to 
obtain the correct spectrum at the two limits above. However, as already noticed by 
Fonck et al (1980), this value does not produce the desired agreement. Regarding 
the work of Economou et al, we further add that the sign of the paramagnetic 
contribution in their equations (2) and (3) should be reversed. 

Using equations (2) and (8) derived above we have computed and plotted figures 
1 and 2. Figure 1 is akin to figure 4 of Gay et a1 (1980) and was computed assuming 
T = (lm/ +$)’ as they did. For the two components, m = *3, it shows the Landau 
(E  > 0) and Coulomb (E < 0) regions as well as the expected B-1’3 scaling at E = 0. 
It is easy to see that our figure 1 does not exactly agree with figure 4 of Gay et al. 
As kindly communicated to us by J-C Gay, this should be attributed to their further 
inclusion of the electron spin in the paramagnetic term. 

Figure 2 is motivated by the experimental observations of Gay et a1 in the 
quasi-hydrogenic spectrum of caesium, that ‘the spacing of the resonances continuously 
decreased from the Coulomb to the Landau regime which is almost reached for levels 
at E = 100 cm-’, the spacing being 1.1 hw for B = 20 kG’. For constant E, according 
to equation (15), a plot of n against 1/B should give a straight line. This tendency 
is clearly displayed in figure 2 as the energy increases. 

301 , ’ ,  , , , , , , , , , , , , , 

20 a0 140 2 0 
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Figure 1. Radial quantum numbers plotted against where Bo = 2.35 x lo9 G, 
as obtained from equation (2). The numbers on each curve refers to the energy in cm-’. 
The doublets correspond to m = *3, as indicated. Note the B-’l3 scaling at E = 0 cm-’ 
as well as the Landau (E  > 0) and Coulomb (E  < 0) limits. 
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Figure 2. Build up of the Landau limit for 15 s E s 100 kG. The numbers on each curve 
refer to the energy in cm-’. 

Table 1. Effect of T =  m z  and T =  (imI+f)’ on the radial quantum numbers and on the 
energy spacing. For fixed m and E, the upper line corresponds to T = (im 1 + f)’ while the 
lower corresponds to T = m’. All quantities are calculated with E = 20 kG. D is a measure 
of the relative magnitudes of E and V, (see text). 

m E (cm-’1 T n 

0 -50.0 
0 -50.0 
0 0.0 
0 0.0 
0 50.0 
0 50.0 
0 100.0 
0 100.0 

0.250 
0.0 
0.250 
0.0 
0.250 
0.0 
0.250 
0.0 

40.667 
41.166 
55.797 
56.296 
75.534 
76.033 
97.751 
98.249 

1 d E  
ho dn 

2.204 47 
2.204 52 
1.499 97 
1.500 00 
1.259 72 
1.259 74 
1.163 81 
1.163 83 

_-  D 

-32.60 
-32.60 
-17.27 
-17.27 

-6.466 
-6.466 

2.236 
2.236 

-50.0 
-50.0 

0.0 
0.0 

50.0 
50.0 

100.0 
100.0 

12.250 
9.000 

12.250 
9.000 

12.250 
9.000 

12.250 
9.000 

37.009 
37.505 
51.832 
52.325 
71.392 
71.880 
93.523 
94.007 

2.266 25 
2.266 88 
1.521 02 
1.521 42 
1.266 90 
1.267 15 
1.166 83 
1.167 00 

-33.63 
-33.63 
-17.98 
-17.98 
-7.008 
-7.006 

1.763 
1.767 

-3 -50.0 12.250 38.371 2.141 21 -31.57 
-3 -50.0 9.000 38.867 2.141 82 -31.57 
-3 0.0 12.250 53.834 1.477 39 -16.57 
-3 0.0 9.000 54.326 1.417 77 -16.57 
-3 50.0 12.250 73.775 1.251 14 -5.949 
-3 50.0 9.000 74.263 1.251 38 -5.946 
-3 100.0 12.250 96.102 1.159 64 2.672 
-3 100.0 9.000 96.586 1.159 81 2.677 

To have a clear picture of the effect of the different T models on the radial quantum 
numbers we also plotted in figures 1 and 2 the radial quantum numbers as calculated 
with T = m2.  However, over any reasonable range of parameters, any pair of such 
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curves perfectly overlaps. Since the values of E and B in figures 1 and 2 are the ones 
typically used in experiments, one sees that the result of using T = m2 or T = (Iml+$.)* 
is essentially the same. For B = 20 kG the quantitative difference between the two 
T models can be seen in table 1. From this table one sees that the spacing between 
resonances is much less affected than the quantum numbers (energy) themselves. 
Furthermore, one sees that for E = 100 cm-’ the predicted spacing is about 1.2ho 
in good agreement with the experimental value of l . lhw measured by Gay et al. 

In summary, we have presented a simple analytic eigenvalue formula for the 
quasi-Landau spectrum. This formula is given in terms of elliptic integrals, easily 
generated by programmable pocket calculators, from which numerical results which 
are in good agreement with experiments are easily obtained. In addition, we have 
shown that for parameters of experimental interest T = m2 or T = ( / m  1 +$)2 give 
essentially the same result but, with the WKB approximation, T = m 2  should be 
preferred. It is also worth pointing out that equation (2) can be easily used to study 
hydrogenic atoms in strong magnetic fields. In particular, our equation (2) can be 
directly used to quantise equation (2) of the ‘one-configuration’ ansatz of Wunner et 
a1 (1981). This interesting problem will be discussed elsewhere. 
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ledges support from UFSC-Florian6polis/Brasil and DAAD/Germany. He also 
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edges support from the Department of Energy, Division of Material Sciences, contract 
DE-AS05-79ER10459, He would also like to thank the Max-Planck Institute of 
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