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To check whether packings in channels with non-integer

and integer widths are qualitatively different, we study the dis-

tribution of transients and periods in channels of non-integer

but rational widths w = 5.8, w = 6.2, and irrational widths

w = 2π ≃ 6.2831 . . . and w = 10
√
2 ≃ 14.1421 . . . and

compare the results with those in Fig. 4 and Fig. 5 of the

manuscript. For these four non-integer channel widths we

consistently found sediments to display periodic patterns.

The probability density function (PDF) of transient lengths

seen in Fig. 1, sampled over 106 realizations, shows similar

qualitative behavior as for integer widths. Most noticeably

Fig. 1 shows the characteristic approximately exponential tail.

The distribution of periods, Fig. 2, shows the characteristic

peaks. Therefore, from these simulations we conclude that

no qualitative difference exists between packings deposited in

channels with integer, rational, or irrational widths.
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Figure 1. Probability density functions of transient lengths showing

that non-integer channel widths produce similar results. The number

of samples is 106 for each channel width.

In the packings discussed in the Letter, particles were

dropped with uniform probability over the opening of the

channel. Now, we consider the influence of the bottom layer,

i.e. of the particles touching the ground. Two distinct sce-

narios of width 20 are considered: First, the bottom layer is

formed by 20 particles of diameter 1 at positions 0.5+ i+∆i,

i = 0...19, where ∆i are uniformly distributed real numbers

in the range [−0.1, 0.1], what causes overlaps between par-

ticles and particles and walls. However, although the initial

layer is made artificially, this is not in contradiction with the
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Figure 2. Probability density function of periods indicating that non-

integer channel widths produce similar results. The number of sam-

ples is 106 for each channel width.

Visscher-Bolsterli algorithm. This is the "random shift" sce-

nario. The corresponding PDFs for transient lengths and peri-

ods are shown in Figs. 3(a) and 3(c). Second, particles at the

bottom layer were deposited having gaps between them dis-

tributed with uniform probability in the range [0, 0.1]. This is

the "random separation" scenario. In this case there are less

than 20 particles on the ground. The results for this experi-

ment are shown in Figs. 3(b) and 3(d). Individual panels in

Fig. 3 represent 105 system realizations.

As illustrated by Fig. 3, for both experiments described

above the packings always become periodic and the PDFs of

transient length and periods are similar to the case when the

bottom layer is generated by random deposition, as discussed

in the Letter. The transient distribution shows the exponen-

tial tail, while for periods we find approximately equidistant

peaks, with top of peaks showing a bell-shaped profile – all

qualitatively similar to the case of random deposition of parti-

cles.

In the Letter the focus is on the length of transients and pe-

riods. Here, we extend the analysis by considering packing

fractions within the deposits. We first focus on how packing

fraction depends on height, Fig. 4. As in the Letter, each par-

ticle is dropped with uniform probability over the opening of

the container.

The packing fraction at certain height y0 is defined as:



2

0 200 400 60010
-6

10
-4

10
-2

10
0

0 200 400 60010
-6

10
-4

10
-2

10
0

30 40 50 60
0

0.2

0.4

0.6

0.8

30 40 50 60
0

5

10

15

f(l)

l

(a) random shift f(l)

l

(b) random separation

g(a)

a

(c) random shift

a

g(a) (d) random separation

Figure 3. Experiments showing that distinct bottom layers (described

in the text) produce quite similar results: (a) and (b) PDFs of transient

lengths and (c) and (d) PDFs of periods.
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Figure 4. Dependence of the packing fraction, ρ, on height y for

three system realization with w = 20. The blue vertical lines mark

the end of the transient part of a packing.

ρ(y0) = ny0
πd/(4w), where ny0

is the number of particles

that intersect the line y = y0, and d is the diameter of par-

ticles, here d = 1. If there is a single particle in the system

the total mass in the system is:
∫ +∞

0
ρ(y)w dy = πd2/4,

i.e. the mass of a single particle, assuming the density of par-

ticles is unity. This shows that the packing fraction measure

is well-defined. This measure of packing fraction can locally

exceed 1. As expected, the packing fraction becomes a peri-

odic function of height after the transient ends. Otherwise, no

qualitative differences are discernible.

Next, we study PDFs of packing fractions in the transient

and the periodic parts of packings. The packing fraction in the

transient part of a single packing was defined as the fraction of

the surface covered with particles between the ground and the

center of the lowest particle of the periodic part of the packing.

If a packing did not have a transient the packing fraction was
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Figure 5. (a) Packing fraction PDF, q(ρ), for the periodic and tran-

sient parts of packings. Each individual panel is derived from 104

system realizations with the channel width w = 20. (b) Depen-

dence of the transient length, ℓ, on the packing fraction. Here ρ is

a packing fraction of the transient part. Each dot corresponds to

a single system realization. (c) ∆ρ is a difference between pack-

ing fraction in the transient and the periodic part of the packing, i.e.

∆ρ = ρtransient − ρperiodic.

not measured, which happened in about 10% of all deposits.

For the periodic part, the packing fraction was measured be-

tween the center of the highest particle of the transient and the

lowest particle of the surface of the packing.

Figure 5(a) shows the PDFs of packing fractions for tran-

sients and periodic patterns. The most prominent differences

between the transient and periodic part of packings are: a)

The PDF for periodic patterns shows near its peak an oscil-

latory behavior of clearly larger amplitude then for PDF of

transients, and b) While the PDF of periodic patterns shows

a sharp cut-off at around ρ = 0.78, the PDF of the transients
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Figure 6. (a) Collapse of the data in Figs. 3 of the Letter. (b) Collapse of the data in Figs. 4 of the Letter, plotted as in (a). (c) Collapse of the

data in Figs. 4 but plotted distinctly from (a) and (b).
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Figure 7. Dependence of the average transient length on the channel

width. Inset: dependence of the effective dynamic exponent on the

system width.

shows a slowly decaying tail down to about ρ = 0.71. Fig-

ures 5(b) and 5(c) illustrate attempts to show whether there is

a correlation between the length of a transient and a packing

fraction in the transient part, or the difference between pack-

ing fractions of the periodic and transient part. We find that the

transient length correlates more with the difference of packing

fractions between the transient and the periodic pattern, than

with the packing fraction of the transient.

Figure 6(a) shows a collapse of the curves from Fig. 3 of

the Letter while Figs. 6(b) and 6(c) illustrate two distinct rep-

resentations of the data in Fig. 4 of the Letter. Figure 6(b)

uses the same exponents as in Fig. 6(a) while in (c) a differ-

ent exponent is used. While there is a reasonable collapse in

Fig. 6(a), the data in panels (b) and (c) do not show good col-

lapses.

Finally, Fig. 7 illustrates the dependence of the average

transient length 〈ℓ〉 on the channel width w, to check whether

the system displays a dynamical exponent, say z, describ-

ing the temporal scaling required for the system to reach

the stationary state as a function the system size, and that

could be compared with other universality classes such as,

e.g. the directed percolation. Here, transient lengths were

averaged over 10, 000 system realisations for each channel

width. In the inset, the effective dynamic exponent, zeff,

was calculated by fitting a straight line through the set of

points [log(wi)log(〈ℓi〉)], i=1...6, where wi = w + i∆w,

with ∆w = 5. Figure 7 provides an indication that a unique

dynamical exponent may indeed emerge for larger systems

which, however, are beyond our current computational capa-

bilities.


