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ABSTRACT

In this paper, the alignment of covariant Lyapunov vectors is used to train multi-layer perceptron ensembles in order to predict the duration
of regimes in chaotic time series of Rikitake’s geomagnetic dynamo model. The machine learning procedure reveals the relevance of the
alignment of distinct covariant Lyapunov vectors for the predictions. To train multi-layer perceptron, we use a classification procedure that
associates the number of maxima (or minima) inside regimes of motion with the duration of the corresponding regime. Remarkably accurate
predictions are obtained, even for the longest regimes whose duration times are around 17.5 Lyapunov times. We also found long duration
regimes with a distinctive statistical behavior, namely, the longest regimes are more likely to occur, a quite unusual behavior. In fact, we
observed a largest regime above which no regimes were observed.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0009765

It was recently observed1,2 that in some chaotic dynamical sys-
tems, the alignment of covariant Lyapunov vectors is associated
with changes in regimes of motion or the appearance of large
peaks along the temporal evolution of physical quantities. In such
systems, either long duration regimes or extreme peaks appear
after the strong alignment between covariant Lyapunov vectors.
Here, such alignments are used to train multi-layer perceptron
for the prediction of regime durations in chaotic time series of
Rikitake’s geomagnetic dynamo model. The strategy is to trans-
form the problem of the determination of time intervals into a
classification problem by associating regime duration with the
number of maxima (or minima) observed inside each regime. The
input data for the training are, therefore, the extreme values of
the alignment of covariant Lyapunov vectors, and the number of
maxima (or minima) inside the predicted regime. High accura-
cies are obtained for the predictions, even for the longest regimes
that include times up to 17.5 Lyapunov times. Machine learning
allows us to identify the most relevant covariant Lyapunov vec-
tors needed for a successful prediction. In addition, we found that
the probability to observe the longest duration regimes increases

with the regime duration. This contrasts sharply with what is usu-
ally observed in related systems, namely, that extreme events are
rare.

I. INTRODUCTION

Forecasting is an extremely challenging open problem in realis-
tic systems like stock markets, laser pulses, climate changes, extreme
weathers, critical transitions, and giant ocean waves, among others.
Due to its relevance, forecasting has become one of the most active
research problems in the present days. Recent advances based on
machine learning (ML) techniques open new and interesting ways
to attack the issue of forecasting. In the context of prediction in
chaotic time series, we mention the use of recurrent neural networks
(RNNs)3–5 and multi-layer perceptron (MLP)6–9 and comparison
between several popular methods in ML.10

It was found recently that in some dynamical systems, there is
a relation between the alignment of a specific covariant Lyapunov
vector (CLV) along the flow direction and the occurrence of peaks,
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or abrupt changes, in the time evolution of physical quantities.1,2 The
CLVs point along the stable and unstable manifolds in the tangent
space of the specific system. For example, it was shown that peaks
along the chaotic time series in Chua’s and Rössler’s systems occur
after the alignment of the CLV, related to the stable manifold, along
the flow direction.1 The same was observed in the Lorenz system11

for the alignment of the CLV related to the unstable manifold along
the flow direction and in complex chemical reactions,2 for the align-
ment of CLVs related to stable and unstable manifolds along the
flow direction. Critical transitions can be also predicted in this way.12

Therefore, the alignment of one or all CLVs along the flow direction
may contain intrinsic information about the occurrence of abrupt
changes in the dynamics. Such intrinsic information is used here to
train MLP ensembles to predict regimes of motion. More specifi-
cally, we use the alignment of all CLVs that occur along the chaotic
time evolution of variables in Rikitake’s model as an input to train
MLPs.

The geomagnetic kinematic dynamo model of Rikitake
presents two distinct regimes of motion, corresponding to the polar-
ity reversals observed in the Earth magnetic field.13–15 Thus, we
predict regime duration in Rikitake’s model using a classification
strategy, based on the number of maxima (or minima) inside a given
regime, as explained below. The accuracy in the prediction of the
number of maxima (or minima) is astonishing. Using the alignment
of CLVs to train the MLPs allows us to elucidate the relevant physi-
cal properties behind the success of the prediction. Furthermore, in
distinction to the Lorenz system, Rikitake’s model presents a very
peculiar behavior for the parameters used here. Usually, the proba-
bility to obtain regimes with long duration decays exponentially with
the duration of the regime. In Rikitake’s model, it decays as a power-
law and, after that, the probability to obtain the longest duration
regimes starts to increase again. This means that the longest regimes
become more probable to occur, and there is a bounded interval
of regime lengths, above which no regimes were observed. Such
extreme-like but not rare events are explained using the alignment
of CLVs.

Machine learning allows us to discuss a problematic issue in
this context, namely, to know the relevance of the alignment of dis-
tinct CLVs to describe with success the prediction of peaks, regime
changes, and their duration. As far as we know, there is no math-
ematical argument allowing one to say why in some systems the
alignment of just one CLV along the flow direction is enough to
make predictions, while in other systems, alignments of more than
one, or all CLVs, are needed to do the task. The present work
attacks this problematic issue and significantly outperforms recent
work combining one CLV and bred vectors expansions to improve
predictions.11 Apart from using the ML, the present work analyzes
the relevance of the alignment of all CLVs to the prediction, and it
is thus a kind of higher-dimensional analysis of the CLVs alignment
with respect to the aforementioned Lorenz case.11 Furthermore, we
mention that the classification procedure was first proposed ana-
lyzing the phase space of the Lorenz system.9 In this case, it relies
on the visual information that regime changes occur when the vari-
able x passes through zero, something specific of the systems. The
present work checks another classification technique, applied to the
tangent space (namely, to the CLVs) of Rikitake’s attractor, being
independent of particular properties of the attractor.

Before proceeding, we mention that Rikitake’s 1958 ingenious
idea of electrically coupling together two disks resulted in the first
kinematic dynamo model to display polarity reversals of the Earth
magnetic field. A remarkable landmark is that Rikitake observed
that polarity reversals occur at random intervals, i.e., chaotically, five
years before the 1963 celebrated paper of Lorenz. Rikitake studied
his model without the benefit of computers.

The paper is divided as follows. Section II briefly presents
Rikitake’s model together with some dynamical properties that are
relevant here. Section III presents details and results using ML to
predict regime changes. Section IV summarizes our main results.

II. THE RIKITAKE MODEL

A simple and inspiring mechanical model used to study the
reversals of the Earth’s magnetic field is a two-disk dynamo system
proposed by the geophysicist Rikitake (see Ref. 16). The correspond-
ing non-dimensional equations of motion are

ẋ = zy − µx, (1)

ẏ = (z − α) x − µy, (2)

ż = 1 − xy, (3)

where x and y are the currents of the dynamo coils, z is the angular
velocity of the dynamo disks, and α = µ(K2 − 1/K2). The parame-
ters µ and α must be positive and represent the resistive dissipation
and the difference of the angular velocities of the two dynamo
disks, respectively. We use the parameters combination µ = 1.1 and
K = 2, which leads to α = 4.125. The Lyapunov exponent of the
chaotic attractor from this model was analyzed17 in the parameter
space interval 0 < µ < 5 and 0 < α < 30.

A. Covariant Lyapunov vectors

For the parameters considered here, the dynamics of Riki-
take’s model is chaotic and the Lyapunov spectrum of this chaotic
attractor is (λ1, λ2, λ3) = (0.23, 0, −3.41). To each exponent, there
is an associated invariant manifold defined in the tangent space: the
unstable manifold related to λ1, the stable manifold related to λ3,
and the manifold related to λ2, which is tangent to the flow direc-
tion since λ2 = 0. The correct directions of the invariant manifolds
along the attractor can be obtained by calculating the correspond-
ing normalized CLVs: Ev1, Ev2, and Ev3. These vectors point along the
unstable, flow, and stable directions, respectively. From the CLVs,
it is possible to determine the angles between invariant manifolds
from1,2

θij = arccos (Evi · Evj), for i < j = 1, 2, 3, i 6= j. (4)

Here, CLVs are computed using the methodology explained in
Refs. 1, 2, 9, 18–21, and 22. Below, our results will be given in
terms of the Lyapunov time tL = 1/λ1 ≈ 4.35, related to the positive
Lyapunov exponent.

B. The dynamics and regimes

Figure 1 shows a typical chaotic attractor. To obtain it, a
numerical integration was started from (x0, y0, z0) = (0.1, 0.01, 0.001),
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FIG. 1. The two wings of an illustrative chaotic attractor of the Rikitake model,
corresponding the two regimes of oscillation observed for µ = 1.1, K = 2, and
α = 4.125.

a transient 107h (h = 0.01) time steps was discarded, the plotting of
a total integration time was 4 × 104 h. The attractor has two wings
called regimes of motion. An alternative way to visualize the regimes
is shown in Fig. 2, which displays the time evolution of the x vari-
able (black curve) from a representative trajectory. The two regimes
are separated by the sign of x and represent the reversal of the mag-
netic field. Inside each regime, one sees oscillations that are directly
related to the duration of the individual regimes.

The duration of regimes can vary significantly along a given
trajectory and reveals interesting properties of the underline dynam-
ics. In order to apply the classification strategy adopted in Sec. III,
it is appropriate to use the number of maxima (or minima) inside
each regime. For x > 0, we calculate the maxima inside a regime
and for x < 0 the minima and use kn to quantify them. Thus, kn

is the number of local maxima (or minima) inside the regime n.
Along the whole simulations, we found 2 × 105 regimes contain-
ing 1 ≤ kn ≤ 24 extrema. The duration of the nth regime is denoted
by Dn = τn+1 − τn, where τn is the time at which the regime starts.
So, regime n occurs during the time interval t ∈ (τn, τn+1]. In the

example from Fig. 2, we see that, at time τn−1, a regime with kn−1 = 4
minima starts and, at time τn, a regime with kn = 14 maxima starts.

In Fig. 2, we also plotted in blue the quantity θ23. Red dots indi-
cate maximum and minimum values of θ23 before regime changes.
As can be seen, at the red dots, the values of θ23 are very close to 0
or π , indicating the alignment of the stable manifold along the flow
direction. The alignments occur before regime changes are observed.
These are the same alignments of manifolds along the flow direction
that have been used to predict regime changes and durations in other
systems.1,2,11

C. Distribution of kn maxima (or minima)

Figure 3 presents the normalized histogram of the number of
regimes having a given kn inside each regime. As may be seen, until
about 20 the number of events decreases when kn increases. These
events obey a power-law decay with exponent −1.55 (see the fitted
red curve in Fig. 3). This is close to the exponent −1.5 found nearly
three decades ago using a discrete version of Rikitake’s model.23 For
longer duration regimes, kn lies between 21 and 24, and the prob-
ability of their occurrence increases with kn. This means that such
longest events are more likely to occur.

The physical reason for such statistically different long events
can be explained with the alignment of CLVs. Figure 4 shows an
example of a regime with kn = 24 local maxima, together with the
angle θ12. In this case, the kn = 24 maxima occur during the time
σn − σn+1 = 12 946.40 − 12 871.07 = 75.33. It can be clearly seen
that, in contrast to θ23 from Fig. 2, the angle θ12 is very close to π

at the beginning of the long regime (see black square). Thus, there
is a strong alignment between the unstable manifold and the flow
direction, which occurs at the beginning of the regimes. This strong
alignment remains constant for a long time inside the regime and
seems to be responsible for the long regime duration.

During all simulations, we consistently found that the align-
ment of CLVs along the flow direction is responsible for two kinds of
predictions: (i) the alignment that predicts regimes changes, marked
as red dots in Figs. 2 and 4 and (ii) the alignment leading to very
long duration regimes, indicated by the black square in Fig. 4.

FIG. 2. Temporal evolution of x, black curve, displaying regime changes and duration, plotted together with the angle θ23 shown in blue. Red dots indicate positions of the
extreme values of θ23 preceding regime changes. For reference, horizontal dashed lines indicate values of 0 and π .
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FIG. 3. Normalized distribution of the number of kn inside each regime.

For clarity, we name the former as regime change alignment and
the latter as regime duration alignment. It has been shown before
that the regime change alignment is also related to the duration of
the predicted regime,1,2,9,11 but the property observed in Fig. 4, the
regime duration alignment, has never been observed and has dif-
ferent behavior than the regime change alignment, at least from
the statistical point of view. The longest regime duration found has
76.39, which corresponds to 17.56 Lyapunov times.

We observed (not shown here) that results for angles close to π

and close 0 are similar so that we superposed them using

θ ′
ij =

{

π − θij, if θij >
π

2
,

θij, in other cases,
(5)

and θ ′
ij remains inside the interval [0, π/2], with i < j = 1, 2, 3. This

simplifies simulations and alignments occur when θ ′
ij → 0. Figure 4

illustrates the behavior of θ12 while Fig. 2 shows the behavior of θ23.
In fact, the combined properties from θ12 and θ23 are found to be
of relevance for the prediction. This will become evident below in
Sec. III, when machine learning techniques are applied.

Next, we define the following extreme quantities:

An = min{θ ′
12(t) : t ∈ (τn, τn+1)},

Bn = min{θ ′
13(t) : t ∈ (τn, τn+1)},

Cn = min{θ ′
23(t) : t ∈ (τn, τn+1)}.

(6)

These quantities are the minima of θ ′
ij inside regime n. In Fig. 5,

we plot Cn−1 against An−1 with colors indicating the number kn

inside the regimes. As can be observed, when Cn−1 → 0, kn inside
the regime increases. Simultaneously, the number of available An−1

decreases since the number of points in Fig. 5 decreases. For values
close to (An−1, Cn−1) ≈ (0.08, 0.06), we observe a turning point that
occurs around a turning line magnified in the inset of Fig. 5. Dis-
tinct values of kn are observed in this magnification. These events
have low probability to occur and will not be discussed further.

More important is the gray stripe on the top left of
Fig. 5, where An−1 → 0 and Cn−1 → 0.25 (see black arrow). Since
An−1 → 0, these events are related to very strong alignments of
the unstable direction along the flow and lead to the longest
regimes. In such cases, the angle Cn−1 can have only one spe-
cific angle close to 0.25. This fact provides a physical interpre-
tation for the origin of such long regimes: the strong alignment
between the unstable manifold and the flow direction, together
with a specific constant direction of the stable manifold along the
flow. This occurs for a reasonably long time (roughly 72 time
units) in the example shown in Fig. 4, where the whole season
duration is 75.3 time units. Additional simulations (not shown)
revealed that the largest finite-time Lyapunov exponent (not the
asymptotic value 0.23), calculated inside the time window of the
regimes, approaches zero for larger values of kn. This means that
the distinct behavior observed in Fig. 4 is related to a transient
quasi-stable motion, which leads to such long regimes. In fact, the
resulting transient quasi-stable motion looks like a transient limit

FIG. 4. Temporal evolution of x (black curve) displaying a regime with 24 maxima plotted together with the angle θ12, shown in blue. Red dot indicates the minimum alignment
of θ12, which predicts the regime change. The black square indicates the strong alignment at the beginning of the regime.
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FIG. 5. Cn−1 vs An−1 with colors indicating kn = 1 → 24 inside the regimes.

cycle. To explain this recall that, besides the strong alignment of
the unstable manifold along the flow direction, the angle of the
stable manifold along the flow direction is also small (θ ′

23 = 0.25).
Thus, when the trajectory evolves along the flow and the unsta-
ble direction, and is simultaneously affected by the stable manifold,
it is trapped to a kind of transient limit cycle, which leads to the
long regimes. The point to mention is that such trapping behav-
ior looks similar to trajectories being trapped around regular tori
or almost invariant structures in typical weakly chaotic Hamilto-
nian systems.24,25 In fact, the relation between the transversality of
CLVs and dynamical trapping in Hamiltonian systems has been
demonstrated.26 The trapping motion, also known as stickiness,
increases the probability of a chaotic trajectory staying close to
a quasi-regular motion. Something analogous occurs here for a
dissipative system.

Furthermore, we realize from Fig. 5 that for one value of Cn−1,
there is only one corresponding value for kn (apart from some small
exceptional points). For example, for Cn−1 = 0.2, we have only one
possible value of kn = 3. However, for one value of An−1, for exam-
ple, An−1 = 0.2, there can be five possible correspondent values of
kn, namely, 1, 2, 3, 4, and 5. This means that Cn−1 is a better quantity
than An−1 to identify the correct value of kn. We come to this point
again later on, since the machine learning technique is able to rec-
ognize the superiority of Cn−1 to find the correct kn when compared
to the other quantities.

III. MACHINE LEARNING PREDICTION OF kn

Machine learning is nowadays a popular technique to perform
specific tasks without using explicit instructions, relying on infer-
ence based on intrinsic patterns. It is a well-documented technique.
Here, we follow the main steps described in, e.g., Refs. 6 and 27.
MLPs are feedforward artificial neural networks. Initial data are
used as input of the network. The propagation of the information
goes from the input layer to the output layer. All neurons from one

layer are connected to all neurons from the next layer. The connec-
tions have weights, which are adjusted during the training. Once the
MLP is trained, decision frontiers are established from which the
points are classified. In this way, points are classified according to
the regions they are found. In what follows, we briefly review the
main steps of the procedure adopted.

A. Artificial neural network

In Fig. 6, we represent one multi-layer perceptron used in this
work. Its input layer has neurons whose activation function is the
identity function, represented as black rectangles. These neurons
establish the connection to the first hidden layer. We use three hid-
den layers with 50, 100, and 50 neurons, in this order. All neurons
from one hidden layer are connected to all neurons from the next
hidden layer and just with them. All connections have some weights.
For the activation functions in the hidden layers, we use the Rec-
tified Linear Unit (ReLU).28 Furthermore, the propagation of the
information is just forward, i.e., from left to right.

In the output layer, an output vector returns one probability for
each class. One class of the 24 classes observed is then used according
to the largest probability given by the function softmax.29 In this way,
we relate one point, for example, (An−1, Bn−1, Cn−1), to the predicted

class k
(pred)
n (for simplicity, along the text we just use kn).

The training procedure is nothing more than a mathemati-
cal method that minimizes errors by updating the weights in the
connections between neurons. The correction of the weights is per-
formed using the backpropagation method with gradient descent in
weight space.27 Once the MLP is trained, the weights of the connec-
tions between neurons do not change anymore, and we proceed with
the tests. The accuracy of the method is determined by comparing

k
(pred)
n with the real class kn along all regimes.

For the simulation, we use an ensemble of up to 40 distinct
MLPs, each one with distinct initial conditions. The MLPs can give
different answers, and the pointing of the majority is considered to
be the correct one. In the case of a tie, we selected the lowest kn.

FIG. 6. Schematic representation of one multi-layer perceptron used in the
simulations here. See the text.
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B. Classification procedure and strategies

From the dynamical point of view, the dynamics of Riki-
take’s model has some similarities with the dynamics of the Lorenz
model. The most relevant similarity is the appearance of two distinct
regimes of motion, as illustrated by the pair of wings in Fig. 1. This
suggests that a kind of classification procedure as proposed to train
the MLPs in the Lorenz systems1 could be implemented to predict
polarity reversals. Here, instead, as inputs for the ML, we use the
extreme alignment of CLVs to predict a regime n and the number
of kn. The strategy is to transform the time interval determination
problem into a classification problem, namely, to associate the dura-
tion of the regime with kn, the number of maxima (or minima)
inside each regime.

More specifically, we use an ensemble of MLPs to classify
points in the space of extreme angles according to the number kn

found in the regime (which is the predicted regime). Simulations to
train the MLPs used a distinct combination of data obtained from
the definitions given in Eq. (6). Therefore, we define the following
strategies:

ABC : [An−1, Bn−1, Cn−1] → kn,

AB : [An−1, Bn−1] → kn,

AC : [An−1, Cn−1] → kn,

BC : [Bn−1, Cn−1] → kn.

To obtain strategy AC, for example, we use data like (An−1, kn)
= (0.91, 24) or (Cn−1, kn) = (0.113, 14), where An−1 (Cn−1) is the red
dot right before the regime with kn = 24 (kn = 14), as indicated by
an arrow in Fig. 4 (Fig. 2). In other words, for strategy AC, we estab-
lish a relationship between the pair (An−1, Cn−1) and the label, which
identifies the class kn. All strategies adopted consider the three CLVs.
They differ by the angle between the invariant manifolds. Thus, each
of the combinations above represents an ensemble of data that leads
to a given class kn.

C. Results

For the training, we generate, from distinct initial conditions,
40 sets with 2.5 × 103 elements containing the information about
the alignment of CLVs along the time series. In other words, we
have used the alignment of CLVs from 40 distinct time series with
2.5 × 103 values of kn. Each set is used in one MLP. Thus, the
MLPs were trained individually and their combined work is called
an ensemble.

In order to test each individual classification strategy, 40 sets
with 2.5 × 103 elements were generated from different random ini-
tial conditions. This gives a total of 105 elements, which are con-
catenated in one block of data. Since random processes may lead
to differences in the learning process, tests and training were real-
ized 10 times for each ensemble. Results are, therefore, presented
as averages over 10 repetitions. This ensures the robustness of the
method. Input data were multiplied by 10 to facilitate the determi-
nation of the classes. Training data were not chosen randomly but
according to the way they were generated. In other words, in the
numerical integration of Eqs. (1)–(3), data were obtained as time

FIG. 7. Accuracies of distinct classes ABC, AB, AC, and BC as a function of the
number of MLPs used for the training.

increases and used in this time order as input for the training pro-
cedure. Other methods generate the data in the same way, but for
the input of the training procedure, the time is chosen randomly.
Results are apparently independent of this choice.

As mentioned, as classifiers we use ensembles up to 40 MLPs
with three hidden layers and 50, 100, and 50 neurons. For the activa-
tion functions, we use the rectified linear unit (ReLU) and choose the
optimizer Adam30 and loss measure categorical cross-entropy.31 Here,
500 epochs are used for the training and the connection weights are
recalculated in each epoch in accumulations of 40 samples. For the
validation, we reserved 20% of training datasets.

Figure 7 presents results for the accuracy of predictions of kn

for the distinct strategies as a function of the number of MLPs. The
accuracies increase with the number of MLPs and reach a thresh-
old. Strategies ABC and AC reach a threshold of accuracy 0.977,
BC reaches a threshold of accuracy 0.970, and AB a threshold of
accuracy 0.940. The optimal number of MLPs used to obtain these
accuracies are, respectively, 40, 35, 33, and 39.

We emphasize that the performance of strategies ABC and AC
is very similar. This indicates that the information coming from B,
namely, the angle between stable and unstable manifolds, is unnec-
essary for the prediction. Furthermore, besides the strategy ABC, the
best accuracies were obtained when information from C was present.
Therefore, the angle between the stable manifold and the flow direc-
tion is the most relevant for the prediction. This is a confirmation of
what can be observed in Fig. 5, where the relation between Cn−1 and
kn is unique.

Figure 8 presents the accuracies in each class (kn) for the
ensemble with the best result in each strategy (ABC, AB, AC, and
BC). It can be seen that all strategies are almost equally accurate to
predict values kn ≤ 12. At kn = 13, the efficiency of the strategies
start to separate from each other and slowly decrease. In the interval
13 ≤ kn ≤ 21, the efficiency of the strategy AB diminishes signifi-
cantly. Thus, the less accurate predictions from strategies AB and

Chaos 30, 083106 (2020); doi: 10.1063/5.0009765 30, 083106-6

Published under license by AIP Publishing.

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

FIG. 8. Accuracies to predict specific values of kn for the distinct strategies
ABC, AB, AC, and BC.

BC, observed in Fig. 7, are related to the not very precise prediction
of classes 13 ≤ kn ≤ 21. After that, for 22 ≤ kn ≤ 24, the accuracy of
AB and BC increases again. All strategies are equally efficient to pre-
dict kn = 24. There is a clear qualitative change in the performance
of the distinct strategies for the prediction of kn ≤ 21 or kn > 21.
When compared to Fig. 3, we see that the first interval is related to
a power-law decay, while the second interval is associated with the
increase of the probability to obtain regimes with kn > 21. Results
from Fig. 8 show that the accuracy of all strategies decreases inside
the interval 1 ≤ kn ≤ 21, for which a power-law decay is observed
in Fig. 3.

IV. CONCLUSIONS

This paper investigated the ability of machine learning to pre-
dict reversals of the Earth’s magnetic field according to the coupled
dynamo model of Rikitake. Machine learning is found to produce
exceptionally reliable predictions, as illustrated in Figs. 7 and 8. Our
analysis corroborates previous results that the alignment of CLVs is
intrinsically related to abrupt changes along the dynamics of chaotic
time series and can be used for prediction tasks. More specifically,
this paper shows that the alignment of CLVs can be successfully used
to train MLPs ensembles in order to predict the duration of regimes
in the chaotic time series of Rikitake’s model.

For the classification problem, instead of using the duration
of regimes, we use kn, which is the number of maxima (or min-
ima) inside each regime. Highly accurate predictions are obtained
for most kn, also for the longest ones related to 17.5 Lyapunov
times. To train the MLPs, we use input data that combine the infor-
mation about the extreme alignments of CLVs, following (6), and
the corresponding kn. The combination of aligned CLVs data (the
strategies) that provide the best and relatively similar results was
ABC and AC. Therefore, information coming from B, namely, from

the angle between stable and unstable manifolds, is unnecessary for
the prediction. Furthermore, the best accuracies were obtained when
information from C was present, i.e., the angle between the stable
manifold and the flow direction.

In general, the accuracy for the prediction of classes
ABC, AB, AC, and BC decreases with increasing kn, until kn = 21
(see Fig. 8). In this interval, the probability to obtain a regime with kn

maxima (or minima) decreases with kn and obeys a power-law. For
20 < kn ≤ 24, the performance for prediction of all strategies tested
increases again. This is related to a peculiar behavior found in Rik-
itake’s model for the specific parameter combination used here: the
probability to obtain an event with given kn increases with kn (see
Fig. 3). These extreme-like but not rare events become significantly
more predictable using the CLVs.

The success in predicting the behavior of regimes of motion
in chaotic time series using the alignment of CLVs and machine
learning techniques opens new and interesting lines of research in
geophysical fluid flows, for example. Using a recent technique, called
the objective eulerian coherent structures,32 it is possible to identify,
from a single snapshot of the velocity field, regions where particles
transported by a flow will converge to and diverge from in a time
interval. From the single snapshot of the velocity field, it is possi-
ble to determine approximately the alignment of CLVs and, using
machine learning, to predict abrupt changes in the fluid dynamics.
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