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Complexity of a peroxidase–oxidase
reaction model†

Jason A. C. Gallas, ab Marcus J. B. Hauser c and Lars F. Olsen *d

The peroxidase–oxidase oscillating reaction was the first (bio)chemical reaction to show chaotic

behaviour. The reaction is rich in bifurcation scenarios, from period-doubling to peak-adding mixed

mode oscillations. Here, we study a state-of-the-art model of the peroxidase–oxidase reaction. Using

the model, we report systematic numerical experiments exploring the impact of changing the enzyme

concentration on the dynamics of the reaction. Specifically, we report high-resolution phase diagrams

predicting and describing how the reaction unfolds over a quite extended range of enzyme

concentrations. Surprisingly, such diagrams reveal that the enzyme concentration has a huge impact on

the reaction evolution. The highly intricate dynamical behaviours predicted here are difficult to establish

theoretically due to the total absence of an adequate framework to solve nonlinearly coupled differential

equations. But such behaviours may be validated experimentally.

1 Introduction

The peroxidase–oxidase (PO) reaction is the oxidation of an
organic donor (YH2) with molecular oxygen as the electron
acceptor. The reaction is catalyzed by the enzyme peroxidase

2YH2 + O2- 2Y + 2H2O (1)

The electron donor used in reaction (1) may be a number of
small organic molecules or reduced nicotinamide dinucleotide
(NADH).1,2

Many peroxidases are heme enzymes.1 The catalytic cycle of
the PO reaction is quite complex and involves five different
oxidation states of the heme in the enzyme: ferrous peroxidase
and ferric peroxidase, which differ in the oxidation state of the
heme iron, and compound I, compound II and compound III,
which are different oxygen-binding forms of the enzyme, that
are characterized by having oxidation states of +5, +4 and +6,
respectively. In native peroxidase the iron is in the Fe3+ state.
Ferric peroxidase (Per3+), compound I and compound II parti-
cipate in the peroxidase catalytic cycle:

Per3+ + H2O2 - compound I + H2O (2)

Compound I + YH2 - compound II + YH� (3)

Compound II + YH2 - Per3+ + YH� + H2O (4)

The free radicals (YH�) formed in this cycle may
disproportionate

2YH� - YH2 + Y

or form a dimer (YH)2. In addition to the peroxidase catalytic
cycle (eqn (2)–(4)) the PO reaction involves a number of non-
enzymatic free-radical reactions (reactions and radical reac-
tions involving the enzyme). Some of these reactions are listed
below in Table 1. A more detailed list of reactions known or
believed to participate in the PO reaction can be found in ref. 2.

With a continuous supply of NADH and in the presence of a
modifier (phenol or related compound4) the reaction is known
to display a rich variety of dynamic behaviours, ranging from
bistability6 to oscillations,7–10 and to chaos.11 In fact, the
discovery of chaos in the PO reaction was made shortly after
the publication in 1976 of a seminal paper by Otto Rössler,12

thereby demonstrating for the first time that a mathematical
model of a (bio)chemical reaction could display such behaviour.
Shortly thereafter, chaos was also found in the Belousov–
Zhabotinsky (BZ) reaction.13,14 Since then chaos and other
complex dynamics have been observed in several (bio)chemical
reaction systems.15

Because of this abundance of diverse complex behaviours
the PO reaction has developed into an important biochemical
reaction system, which has influenced the search for similar
complexity in numerous other biological systems. Here we wish
to, first, present some experimental observations of complex
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dynamics in the experimental system and the organization of
the different periodic and chaotic states in a 2D phase space
spanned by pH in the reaction mixture and the infusion rate of
NADH. Next, we describe in some detail a realistic model of the
PO reaction, the Bronnikova–Fedkina–Schaffer–Olsen (BFSO)
model,16 which is capable of reproducing most of the presented
experimental observations. Then, we use isospike17–21 stability
diagrams to explore the complex behaviours of the model for a
hitherto unexplored parameter, namely the initial concentra-
tions of the enzyme. These diagrams show some new and
unexpected aspects of the complexity of the PO reaction,
namely that the enzyme concentration has a huge effect on
the structure of the phase diagrams. This change in structure
could not have been predicted by analytical or semi-analytical
methods and is difficult to explain due to the total absence of a
proper theoretical framework to anticipate the behaviour of
nonlinear sets of differential equations.

Although the BFSO model is semiquantitative in nature, i.e.
only a fraction of the rate constants are known with certainty,
it has up to now reproduced essentially all the dynamical
behaviors recorded experimentally. Therefore, our endeavour
to study the behaviours predicted by the model under hitherto
unexplored conditions is driven by our hope of motivating the
experimental observation of our predictions described below. It
is worth pointing out that several of the complex dynamical
behaviours observed experimentally in the PO reaction were
first predicted by realistic models of the reaction22,23 and we
hope the results reported below to continue this trend.

2 Complex behaviour in the PO
reaction

As mentioned above, the PO reaction will display both simple
periodic9 and complex periodic oscillations10,24 if both reac-
tants, O2 and NADH, are supplied to a reaction mixture
containing peroxidase and an organic modifier (usually 2,4
dicholorophenol). A brief description of the experimental setup

is provided in the ESI,† where we also describe how we main-
tain a constant volume of the reaction mixture by having a low
influx rate of NADH stock solution, which is balanced by
evaporation of liquid. Some of these complex oscillations
belong to a special class of so-called mixed mode oscillations
(MMOs), which are oscillations composed of one or more large
amplitude peaks with intercalation of one or more small
amplitude peaks. To characterize MMOs we use a symbolic
notation LS, where L denotes the number of large peaks and
S denotes the number of small peaks in one oscillation
period.3,24–26 In such regimes, oscillations of medium ampli-
tude are absent. Frequently, MMOs are found in parameter
domains where the dynamics change from periodic oscillations
to chaos and neighboring MMO states LS and LS+1 are often
separated by narrow windows with chaotic dynamics. However,
Hauck and Schneider24 observed a sequence of LS states in the
PO reaction that apparently were not separated by such win-
dows of chaotic dynamics. An example of a MMO peak-adding
scenario is shown in Fig. 1.

This figure shows a sequence of oscillations of compound III
(oxyferrous peroxidase), which has an absorption maximum at
418 nm, following increases in the mean NADH concentration
(mediated by changes in NADH infusion rate). The sequence of
MMO states as the average concentration of NADH is gradually
increased is 10 (blue) - 11 (green) - 12 (cyan) - 13 (red) - . . .

- chaos (black). As the average NADH concentration is
increased further small amplitude periodic oscillations start
in the sequence . . . - 04 (dark red) - 02 (dark green) -

01 (gray). The bifurcation scenario illustrated in Fig. 1 was
obtained at a relatively high pH (pH 6.3). If the same experi-
ment is done at a lower pH (e.g. pH 5.2) then, instead of peak-
adding MMOs, one observes a period doubling scenario.3 Fig. 2
shows a phase diagram of dynamic states spanned by the
relative mean concentration of NADH and pH. We note from
the figure that at around pH 5.4 there seems to be a crossover of
transitions to chaos from period doubling to MMO peak-adding
scenarios. We also note from Fig. 2 that at pH 6.3 the transition
from the 11 periodic state to the 12 periodic state is preceded by

Table 1 List of reactions, rate expressions and rate constants for the BFSO model (adapted from Bronnikova et al.16). In reactions (1)–(11), second-order
rate constants have units of M�1 s�1, while the first-order rate constant in reaction (13) has units of s�1 and the zero-order rate constant in reaction (12)
has units of M s�1. In reaction (13), [O2]eq = 12 � 10�6 M. Pern+ refers to the oxidation state of peroxidase: Per2+, ferrous peroxidase; Per3+, ferric
peroxidase; Per4+, compound II; Per5+, compound I; Per6+, compound III. Note that the activity of H+ is absorbed into the rate constant. The last row in
the table lists the range of variable rate constants

Reaction Rate expression Rate constant Range

(1) NADH + H+ + O2 - NAD+ + H2O2 k1[NADH][O2] 3.0 —
(2) H2O2 + Per3+ - H2O + Per5+ k2[H2O2][Per3+] 1.8 � 107 —
(3) Per5+ + NADH - Per4+ + NAD� k3[Per5+][NADH] 4.0 � 104 —
(4) Per4+ + NADH - Per3+ + NAD� k4[Per4+][NADH] 2.6 � 104 —
(5) NAD� + O2 - NAD+ + O2

� k5[NAD�][O2] 2.0 � 107 —
(6) O2

� + Per3+ - Per6+ k6[O2
�][Per3+] 1.7 � 107 —

(7) 2O2
� + 2H+ - O2 + H2O2 k7[O2

�]2 2.0 � 107 —
(8) Per6+ + NAD� - Per5+ + NAD+ k8[Per6+][NAD�] 9.0 � 107 —
(9) 2NAD� - NAD2 k9[NAD�]2 variable 0–1 � 108

(10) Per3+ + NAD� - Per2+ + NAD+ k10[Per3+][NAD�] 1.8 � 106 —
(11) Per2+ + O2 - Per6+ k11[Per2+][O2] 1.0 � 105 —
(12) - NADH k12 variable 1.0 � 10�7–1.4 � 10�7

(13) O2(gas) $ O2(liquid) k13([O2]eq–[O2]) 6.0 � 10�3 —
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a period-doubled (11)2 state followed by a narrow chaotic
domain. A similar period-doubled (11)2 state was observed at
pH 5.7, but in this case the narrow chaotic domain is either

absent or too narrow to be monitored. Finally, at pH 6.1 a
period-doubled (12)2 state could be determined in the transi-
tion from the 12 to the 13 states. There are undoubtedly many
other narrow periodic and non-periodic states that have
escaped measurement.

The bifurcation scenarios presented in Fig. 1 and 2 are for
an enzyme concentration of 1.5 mM. However, other and
quite different scenarios have been obtained at either
higher24,25,27 or lower enzyme concentrations.10,11 The range
of peroxidase concentrations used in experiments ranges from
0.45 mM10,11 to about 5 mM.24,25,27 Nevertheless, a systematic
experimental study of the effect of changes in enzyme concen-
tration on the dynamics of the PO reaction has never been
done. Such experiments are extremely complex and time con-
suming but fortunately numerical explorations are feasible
and provide clear indications of the exact conditions where
it would be desirable and promising to perform additional
experimental work.

3 The BFSO model of the PO reaction

The oscillating PO reaction has been simulated using both
simple10,28 and detailed29,31–34 models. While the simple
models are capable of exhibiting both period-doubling and
MMO scenarios,35,36 most of the early detailed models show
only bistability and simple periodic oscillations.29,31,32,34 An
exception is the model Z of Aguda and Larter,33 which displays
a period-doubling cascade to chaos.

Fig. 1 Experimental data illustrating peak-adding mixed mode scenario in the PO reaction. The figure shows oscillations in the absorption of compound
III following progressive increases in the mean NADH concentration (mediated by changes in infusion rate of NADH into the reaction system). The
sequence of LS states depicted are 10 (blue) - 11 (green) - 12 (cyan) - 13 (red) - chaos (black) - 04 (dark red) - 02 (dark green) - 01 (gray). Adapted
from Hauser et al.3

Fig. 2 Experimental phase diagram of the PO reaction spanned by pH and
the relative concentration of NADH (determined as the absorption at
360 nm). The latter is indirectly linked to the inflow rate of NADH. The
numbers indicate the number of peaks per period; C indicates chaos.
Adapted from Hauser et al.3
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A more recent model is the Bronnikova–Fedkina–Schaffer–
Olsen (BFSO) model.16 The BFSO model is not radically differ-
ent from the detailed models listed above. It has strong con-
nections to the model Z of Aguda and Larter33 and the so-called
Urbanalator.34 The difference to the older models is mainly in
the selection of reactions and the choice of rate constants and
parameters relating to the inflow of reactants similar to the
experimental conditions. The reactions, rate expressions and
rate constants of the BFSO model are listed in Table 1. A
reaction scheme is presented in Fig. 3. The black reactions in
Fig. 3 ensure only periodic oscillations in the model. However,
combining the black and the red reactions results in complex
periodic oscillations and chaos. Thus, in this case chaos may be
regarded as the result of two coupled periodic oscillators.

The BFSO model (Table 1) translates into the following ten
coupled differential equations:

dx1

dt
¼ k2x4x10 � k3x1x6 þ k8x3x5; (5)

dx2

dt
¼ k3x1x6 � k4x2x6; (6)

dx3

dt
¼ �k8x3x5 þ k11x7x9 þ k6x8x10; (7)

dx4

dt
¼ k1x6x7 þ k7x8

2 � k2x4x10; (8)

dx5

dt
¼ k3x1x6 þ k4x2x6 � k5x5x7 � k8x3x5 � 2k9x5

2 � k10x5x10;

(9)

dx6

dt
¼ �k1x6x7 � k3x1x6 � k4x2x6 þ k12; (10)

dx7

dt
¼ �k1x6x7 � k5x5x7 þ k7x8

2 � k11x7x9 � k13x7 þ k13½O2�eq;

(11)

dx8

dt
¼ k5x5x7 � 2k7x8

2 � k6x8x10; (12)

dx9

dt
¼ k10x5x10 � k11x7x9; (13)

dx10

dt
¼ �k2x4x10 þ k4x2x6 � k6x8x10 � k10x5x10: (14)

The correspondence between the variables xi and chemical
species in Table 1 is the following: x1 2 Per5+, x2 2 Per4+,
x3 2 Per6+, x4 2 H2O2, x5 2 NAD�, x6 2 NADH, x7 2 O2,
x8 2 O2

�, x9 2 Per2+, x10 2 Per3+.
It must be highlighted that although the total concentration

of the enzyme remains constant, there is a considerable
dynamics as to how the different redox states of the enzyme
are populated at different points in time. Thus, the conserva-
tion relation x1 + x2 + x3 + x9 + x10 = x10(0) is always fulfilled,
where x10(0) is the initial concentration of Per3+ added to the
reaction medium. Due to this conservation relation, the
concentration of the enzyme in the medium is not a mere
initial condition, but a parameter that will affect the entire
dynamics of the reaction system. Numerical solutions of
eqn (5)–(14) show the existence of domains of complex and
chaotic dynamics which are both rich and intricate.3,26,37–41

The numerical simulations reproduce several experimental
observations in the PO reaction, e.g. that the chaotic domain
can be reached either via a period-doubling route (at low pH) or
a peak-adding (often also called period-adding) route (at higher
pH) as the relevant parameter is varied. The latter scenario is
associated with the occurrence of relatively narrow chaotic
window separating adjacent states of mixed-mode oscillations
(MMOs)3 LS and LS+1. As the bifurcation parameter is continu-
ously varied, the sequence of MMOs progresses by a successive
addition of low amplitude oscillations to the MMO states until
a relatively broad region of chaotic dynamics is reached.

4 Motivation

Recently, the dynamics of the BFSO model was studied using
isospike17–21 stability diagrams in the control parameter plane
spanned by the supply rate of NADH (reflected by the rate k12)
and the pH-dependent dimerisation of NAD radicals (rate
constant k9).41 Such diagrams represent a powerful way to get
an overview of the periodic and non-periodic states in two-
dimensional sections of a multi-parameter control parameter
space. In addition to a period-doubling route to chaos, which is
found for high values of k9, an extensive domain of the para-
meter space is occupied by peak-adding sequences. Interest-
ingly, two types of peak-adding sequences exist, namely a
classical peak-adding sequence, where adjacent MMO states
are separated by narrow chaotic windows on the one hand, and
on the other hand a peak-adding sequence where a LS state is

Fig. 3 Reaction scheme of the BFSO model. The black lines with arrow
represent the original Urbanalator model,34 while the red lines represent
the supplementary reactions in the BFSO model. The numbers refer to the
reactions in Table 1. For clarity the reactions (1), (12) and (13) in Table 1 have
been omitted from the scheme. Note that the black reactions provide for
only simple oscillations. Complex dynamics implies participation of the red
reactions. Adapted from Hauser and Olsen.5
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converted to a LS+1 state by the simple addition of a low-
amplitude oscillation to the MMO. The latter scenario is
referred to as non-chaos mediated MMOs.41 Both scenarios,
chaos-mediated and non-chaos mediated MMOs have been
reported experimentally.24,26 In addition to reproducing experi-
mentally observed dynamic behaviours, the extensive numer-
ical study of the BFSO model by Hauser and Gallas41 following
changes in parameters k9 and k12 revealed new dynamic beha-
viours, which awaits experimental verification. For example, a new
compact domain of complex and non-periodic dynamics was
found at relatively high values of k12 and low values of k9. This
domain is characterized by an intricate mosaic of periodic win-
dows intercalated by domains of chaotic dynamics. These chaotic
domains display a peculiar fault running through them.41

Motivated by the study of Hauser and Gallas41 and the lack
of experimental knowledge how the enzyme concentration may
affect the dynamics of the PO reaction we have used isospike
stability diagrams to study the dynamics of the BFSO model for
different initial concentrations of variable x10 ([Per3+]). As a
reference point we use the experimental studies presented in
Fig. 1 and 2 that were conducted with an enzyme concentration of
1.5 mM and study the dynamical behaviour of the BFSO model for
values of x10(0) ranging from 1 � 10�6 M to 8 � 10�6 M.

5 Computational details

A popular tool to explore the complexities of dynamical systems
is the Lyapunov exponent.42 Stability diagrams based on Lya-
punov exponents are commonly used to dichotomically sort out
periodic from chaotic oscillations. However, the computational
cost of constructing such diagrams is relatively high, and their
information content is far from the maximal possible. Here, we
record the distribution of the stability phases of the perox-
idase–oxidase oscillator, as well as their boundaries, using
isospike stability diagrams17–21 namely using diagrams which,
in addition to representing chaotic, present also the number of
spikes (local maxima) per period of the periodic oscillations of
any variable of interest. Examples of isoperiodic diagrams are
given in Fig. 4–6, where colours indicate phases characterized
by periodic oscillations while black denotes phases where no
periodic oscillations were detected. Isoperiodic diagrams have
been found useful in the study of complex systems.43–48 For a
recent survey about the computation of standard Lyapunov
stability diagrams and more fruitful alternatives see ref. 21.

Isoperiodic diagrams are much more informative because
they not only discriminate periodicity from chaos similarly to
Lyapunov diagrams but, in addition, their colours simulta-
neously provide detailed cartographic information regarding
the number of spikes per period of the periodic oscillations.
Isoperiodic diagrams allow one to conveniently visualize how
the number of spikes per period unfolds over extended para-
meter windows when two control parameters are concurrently
varied. Although in mathematical flows the period varies con-
tinuously, the number of spikes per period varies discretely.
Discrete variations allow one to contrast distinct stability

phases more easily, as illustrated by Fig. 4–6 and by 13 addi-
tional figures in the ESI.†

To produce the phase diagrams discussed in the next
Section, one starts by covering the parameter window of interest
with a grid of typically 1200 � 1200 = 1.44 � 106 equidistant
points. Then, for each grid point, the temporal evolution is
determined by integrating numerically eqn (5)–(14) using the
standard fourth-order Runge–Kutta algorithm with fixed time-
step h = 0.005. Integrations were performed horizontally from
right to left starting from the initial conditions x1 = x2 = . . . =
x9 = 0. The initial values of x10 acts as an extra control
parameter, recorded in each individual stability diagram and
in the ESI.† Integrations were done by following the attractor,
namely we used the values of xc obtained at the leftmost end
(when finishing the calculation of a horizontal line) to start the
calculation for a new horizontal line, after incrementing the
parameter vertically. The first 7 � 105 integration steps were
discarded as a transient time needed to approach the attractor,
with the subsequent 140 � 105 steps used to compute up to 800
extrema (maxima and minima) for all ten variables of the
system, checking whether maxima repeated or not.

Our diagrams display the number of spikes per period using
a palette of 17 colours. Oscillations with more than 17 spikes
are plotted by recycling the 17 basic colours ‘‘modulo 17’’,
namely by assigning them a colour-index given by the remain-
der of the integer division of the number of peaks by 17.
Multiples of 17 are assigned the index 17. Black is used to
represent ‘‘chaos’’ i.e. lack of numerically detectable periodi-
city, white and gold mark constant (i.e. non-oscillatory) solu-
tions, if any, having respectively non-zero or zero amplitudes of
the variable under consideration.

6 Stability diagrams

Fig. 4 shows ten typical stability diagrams obtained, as described
above, for a control parameter window where k9 and k12 display
the strongest variation. By counting the number of spikes per
period of the periodic oscillations, we assigned a colour (shading)
to represent the number of spikes found. Black was used
to represent lack of numerically detectable periodicity, i.e.
non-periodic oscillations. This assignment was done for each
individual variable xi, i = 1,. . .,10 in eqn (5)–(14) and for every
parameter point of the 1200 � 1200 grids. The ten individual
panels were obtained starting from x10(0) = 1.5 � 10�6 M,
representing the initial concentration of Per3+. We determined
all stability diagrams, independently of whether or not the
variables underlying them may be measured directly in
experiments.

Grosso modo, the panels composing Fig. 4 form three groups
of stability diagrams, namely (i) x1, x2, and x8, (ii) x5, and the
larger group formed by (iii) x3, x4, x6, x7, x9, and x10. However,
closer inspection reveals a myriad of small differences among
panels in each group. It is worth stressing that isospike
diagrams display the number of spikes per period, not the
period of the oscillations. The period varies continuously, while
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the number of spikes varies discontinuously.21 For example, the
blue domain in Fig. 4 for variables x3, x4, x6, x7, x9 and x10

represents oscillations with one spike per period, while much
of the corresponding domain for variables x1, x2, x5 and x8

represents oscillations with two spikes per period. However, for
all ten variables in this domain corresponds to a simple
periodic oscillation in the sense that their phase plot is a
one-loop limit cycle.

Although individual phases are different on a finer scale,
they reveal relatively similar division of the control parameter
windows. It is important to keep in mind that these diagrams
are by no means easy to obtain experimentally. But it is quite
reassuring to learn that, in essence, their overall agreement
is quite satisfactory. For instance, at high values of k9

(corresponding to a low pH) we observe a period-doubling
route to chaos as k12 is increased, while at low values of k9

Fig. 4 Stability diagrams representing in colours the number of spikes (local maxima) per period for the ten variables xi of the model, when fixing the
initial condition x10(0) = 1.5 � 10�6 M. The variable xc for which the isospike diagram is calculated is inserted at the bottom right of each panel. Black
denotes chaos, i.e. lack of numerically detectable periodicity. The colourbar at the bottom applies to all panels.
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(corresponding to a high pH) we observe a peak-adding
sequence of periodic states culminating in chaos.

In the x3 panel in Fig. 4, numbers mark the number of
spikes per period for the first few major parameter windows.
The colourbar, valid for all ten panels, indicates how higher
number of spikes were coded, modulo 17. Note that there are
two distinct possibilities for transitioning between phases
having one and two spikes: transitions may or may not be
mediated by a narrow black phase representing non-periodic
oscillations. Similar duality of nonchaos-mediated and chaos
mediated passages is possible between phases characterized by
higher number of spikes. Such dual possibility of transition was
previously observed in ref. 41.

How do stability diagrams change when increasing x10(0),
namely the initial concentration of Per3+? Fig. 5 provides an
answer, illustrating how diagrams obtained by counting spikes
of x3 vary with x10(0). The variable x3, i.e. Per6+, was chosen
because it is the experimentally best accessible variable. Per6+ is
one of two dominant redox states (the other is Per3+, namely
x10) in the PO reaction and has a distinct absorption peak at
418 nm and it gives a large almost noise-free signal49 as
opposed to, e.g., the signals from NADH (x6) or O2 (x7) which
are relatively noisy. Other experimental variables (corres-
ponding to variables x1, x2, x4, x5, x8 and x9 cannot be mea-
sured, either because their concentrations are extremely low or
because they are spectroscopically ‘‘silent’’. In this, as well as in

Fig. 5 Evolution observed when counting spikes of x3 as a function of the initial condition x10 (in M). The white regions growing on the upper part of the
panels denote phases of non-oscillating zero-amplitude solutions. Panel (e) presents a magnification of a selected region from panel (d). Notice
differences in the horizontal scales, used to enhance visualization of details. As indicated on the bottom row, large dark blue phase represent parameters
leading to regular oscillations with ones spike per period. The colour coding is the same in all panels.
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all other figures, the large blue regions represent parameters
producing regular oscillations with one spike per period.

Manifestly, Fig. 5 shows that stability diagrams do not
change significantly from x10(0) = 1.0 � 10�6 M up to about
x10(0) = 1.5 � 10�6 M. Beyond this, the otherwise relatively
smooth spike phase starts to develop rather intricate structures.
In the top portion of the diagrams, the smooth and mild
bending turns into a complex phase protruding to the right
and acquiring an inner structure. As x10(0) grows more and
more, the previously tame phases develop a rather complex
mosaic-like covering of spike phases that, while easy to grasp
visually from the figure, are difficult to describe briefly with
words. For x10(0) r 1.5 � 10�6 M the phase diagrams appear as
an elongated seemingly well-ordered system of domains of
periodic states separated by domains of period-doubled and
non-periodic states. At values of 1.5 � 10�6 M o x10(0) o 3.0 �
10�6 M the phase diagrams develop in to a ‘‘molten’’ version of
the diagrams obtained at x10(0) r 1.5 � 10�6 M. At values of
x10(0) Z 3.0 � 10�6 M the phase diagrams become a patchwork
of periodic and non-periodic states enclosed in an almost
ellipsoidal structure which again is surrounded by states with
few spikes (see below, Fig. 6 and 7).

From the panels at the bottom of Fig. 5 it is possible to
recognize a curious phenomenon involving the large stripes
corresponding to phases of regular oscillations with 1, 2, and 3
spikes per period. These wide stripes have a clear impact in the

complex mosaic-like phases which exists above the stripes, in
the region of larger values of k12. It is important to emphasize
that there is no theoretical procedure to anticipate the compli-
cated unfolding of the self-organization of spikes for a given
set of coupled nonlinear differential equations. We have not
been able to understand why the stripes have such a long-
ranging effect in the intricate mosaic of phases which exist
above them.

The last panels in Fig. 5 seem to provide evidence that the
phases which protrude to the right for x10(0) = 1.8 � 10�6 M,
x10(0) = 2.0 � 10�6 M, and x10(0) = 2.5 � 10�6 M, have receded
for x10(0) = 3.0 � 10�6 M. This behaviour prompts a natural
question: what happens to the mosaic of phases when x10(0)
further grows? The answer is given in Fig. 6.

Fig. 6 shows what happens to the stability diagrams
obtained by counting spikes of x3 when the value of x10(0)
increases beyond the values presented in Fig. 5. The most
significant feature is that the complex mosaic of phases seems
to preserve essentially the same topology. It is not difficult to
recognize that the structure found for x10(0) = 4.0 � 10�6 M
starts to inflate as x10(0) increases continuously while preserving
similar topological structure. Conspicuously, the aforementioned
long-ranging effects on the intricate mosaic of phases which arise
from the large stripes of 2, 3, 4, 5 spikes at the bottom of the
panels not only persist but have their influence made remarkably
more clearly noticeable.

Fig. 6 Crystallization process of the distribution of x3 spikes observed when x10 increases. The complex mosaic of phases remains roughly invariant
topologically. The growing white stripes on the top and on the left boundaries denote phases of non-oscillating solutions (fixed points) with zero
amplitude. The colour coding is the same in all panels.
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Although not every feature of the stability diagrams in Fig. 5
and 6 can be explained in detail, we may use the reaction
scheme in Fig. 3 to find out why an increase in x10(0) results in a
growth of the phase where complex dynamics is observed: it is
known that the black reactions in Fig. 3 will only lead to simple
periodic oscillations.2,34 It is the red additional reactions,
reactions (10) and (11), that provide the model with the ability

to show complex dynamics.2,16 Thus, the dynamics exhibited by
the BFSO model must be a result of the relative contributions of
reactions (6) and (11), and hence the fluxes of these reactions
may provide a measure of the complexity observed. We cal-
culated these fluxes at the unstable steady state for changing
values of k9, k12 and x10(0) using the simulation software
COPASI.50 In this way, we observe that whenever the steady

Fig. 7 The structural mosaic crystallization is observed for all ten variables xi of the model, here shown for x10(0) = 6.0 � 10�6 M. The individual
distribution of spike phases depends of the variable used to count the spikes. Stability diagrams for all ten variables and for several additional values of
x10(0) are given in the ESI† to this paper. The colourbar of the bottom panel applies to all panels.
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state flux of reaction (11) is small relative to the steady state flux
of reaction (6) (typically less than 5%) the dynamics correspond
to a simple periodic oscillation. However, for larger relative
contributions of the steady state flux of reaction (11) the
dynamics almost always correspond to complex periodic or
non-periodic oscillations. As the value of x10 increases from
1.0 � 10�6 M to 8.0 � 10�6 M the parameter space spanned by
k9 and k12 where the relative contribution of the steady state
flux of reaction (11) is larger than 5% increases dramatically
and so does the complexity of the dynamics.

To further understand the phase diagrams we may use the
fact that the PO reaction is an example of an extended activa-
tor–inhibitor system.30,51,52 In the terminology of dynamical
systems, an activator is a species that destabilizes the current
state, once its concentration is increased. By contrast, an
inhibitor is defined as a species that prevents an unrestricted
increase in the concentration of the activator. Stoichiometric
network analysis of the reaction network shows that its struc-
ture is surprisingly intricate and contains multiple nested
feedback loops.30 These are represented by a core system, that
leads to periodic oscillations, and at least three additional
positive feedback loops.30 The core system contains a positive
and a negative feedback loop. The positive feedback loop
consists of the autocatalytic formation of NAD� radical (x5)
during the reduction of Per6+ (x3) to the native Per3+ form of the
enzyme (x10). This involves reactions (8), (3) and (4) in Fig. 3.
The negative feedback loop preventing an unrestricted accu-
mulation of NAD� consists of the oxidation of NAD� by oxygen
(O2) (reaction (5) in Fig. 3).30 The most oxidized form of the
enzyme (Per6+) serves as an additional inhibitor, since its
concentration may temporarily approach or reach zero. Hence,
when all enzyme is converted to its most reduced forms (x9 and
x10), the autocatalytic formation of NAD� through the sequence
of reactions (8), (3), and (4) is interrupted. Therefore, even
though Per6+ is at the origin of the autocatalytic step, its
dynamical function is that of an inhibitor. Note that a similar
motif is also found in the reduced Oregonator model for the
Belousov–Zhabotinsky reaction, where the reduced form of the
metal catalyst also plays the role of the dynamic inhibitor
because it limits the autocatalytic step (process B) once it is
completely oxidized.53 The oscillatory loop is closed by the
oxidation of reduced enzyme species (either Per3+ or Per2+,
via reactions (6) and (11) of Fig. 3, respectively), where the
oxidation of Per3+ predominates for kinetic reasons (the rate of
reaction (6) exceeds that of reaction (11)).

Stoichiometric network analysis revealed that, in addition to
the aforementioned core oscillator, the intricate reaction net-
work of the BFSO model (Table 1 and Fig. 3) contains three
additional subnetworks, each of them providing positive feed-
back. These subnetworks are made of the core oscillator
comprising the interaction between Per6+, O2, and NAD�, plus
their reactions with a fourth species that is not involved in the
core system. These 4-variable subnetworks are centred around
either Per3+, Per2+, or O2

�.30 The native enzyme Per3+, namely
x10, participates in the first positive feedback loop due to
complex interactions with the three reaction partners NAD�,

O2 and Per6+.30 This means that complex periodic or non-
periodic oscillations may occur. Combining this feedback
loop with the core oscillator results in a 4-variable ‘‘Per3+

subnetwork’’.30

The second activating subnetwork involves the oxidation
of the most reduced form of the enzyme (Per2+) by oxygen to
yield Per6+ (reaction (11) in Fig. 3). On the one hand, reaction
(11) generates Per6+ which will positively affect the rate of the
autocatalytic step. However, it consumes the inhibitor O2, thus
providing for a positive feedback. When combining this posi-
tive feedback with the core oscillator one obtains a 4-variable
‘‘Per2+ subnetwork’’.30

The third positive feedback loop is given by the reactions
converting O2 to O2

� (x8) and vice versa (reactions (5) and (7) in
Fig. 3). This loop is a positive feedback, as it actively removes
O2. The net stoichiometry of reactions (5) and (7) shows that the
loop is a net consumer of O2, i.e., for each mol of O2 consumed
in the loop, only half a mol of O2 is produced. Accordingly, the
loop has two features that have activating character, namely,
(i) a net consumption of O2, and (ii) the temporary depletion
and time-delayed supply of O2 by the loop. Combining this
positive feedback loop with the core oscillator generates a
4-variable ‘‘O2

� subnetwork’’.30

All three subnetworks contribute to the overall dynamics of
the PO reaction. However, due to the comparatively low rates of
the oxidation of most reduced enzyme species (Per2+), the Per2+

subnetwork involving reaction (11) (Fig. 3), always plays a
minor role, especially at low enzyme concentrations as dis-
cussed above. By contrast, the other two subnetworks (Per3+

and O2
�),30 involving the oxidation of the native enzyme (Per3+)

to coIII through reaction (6) in Fig. 3 and the loop formed by
reactions (5) and (7) compete for the NAD� radicals. At the
low enzyme concentrations used in most experiments3,10,11,26

(r1.5 � 10�6 M) the reaction of NAD� with O2 is kinetically
preferred over similar reactions with the enzyme.30

However, as shown above, the relative contributions of the
different positive feedback loops to the dynamics of the PO
reaction will change with a substantial increase in the initial
concentration x10(0) of enzyme. Calculations of the Jacobian
matrices for different values of x10(0), again using the COPASI
software, enable us to identify two of the three subnetworks
listed above: the Per2+ and the O2

� subnetworks, respectively.
Not surprisingly, the O2

� subnetwork dominates at low values
of x10(0) while the Per2+ subnetwork dominates at high values
of x10(0). Hence, the increase in the parameter region, spanned
by k9 and k12, where complex dynamics is observed with
increasing x10(0) and the dramatic change in the structure of
the stability diagrams may well be due to this passage from one
subnetwork to the other.

Are the structural characteristics presented in Fig. 6 a
specific property of the distribution of the x3 spikes represented
in the figure, or are they also reproduced when counting spikes
for other variables? It turns out that the same mosaic crystal-
lization is detected for all ten variables xi of the model, as
illustrated in Fig. 7 for x10(0) = 6.0 � 10�6 M. The individual
distribution of spike phases depends of the variable used to
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count them, but there is a remarkable degree of topological
invariance among the panels. It is important to observe that, in
all our stability diagrams, the inner spikes distribution for the
set U representing the union of all phases of periodic oscilla-
tions may depend on the variable used to count the spikes.
However, the shape and the boundary of U do not depend on
the variable used to count the spikes. Furthermore, for any
fixed set of parameters, the period measured using every
variable of the model is always the same, independently of
the number of spikes that the individual variables may have.
Thirteen sets of stability diagrams for all ten variables and for a
large selection of additional values of x10(0) are presented as
ESI† to this paper.

7 Conclusions and outlook

This paper presented a brief review of the Bronnikova–Fedkina–
Schaffer–Olsen model of the PO reaction, which is known to
reproduce well most of the experimental observations available,
and to be rich in dynamical behaviours.41 Using this model, we
computed high-resolution phase diagrams providing a detailed
view of the stability phases of the reaction observed when
recording the number of spikes per period of the periodic
oscillations for all ten variables of the model. This was done
for a wide range of the initial concentration x10(0) of the
enzyme, including domains for which experimental results
are still missing.

A startling characteristic revealed by our phase diagrams is
the quite significant and unexpected high-complexity of the
distribution of states characterized by different waveforms.
Furthermore, the structural complexity of the phase diagrams
was found to be strongly dependent of the initial enzyme
concentration which, therefore, greatly impacts transitions
between periodic states with one spike per period, between a
myriad of states with an arbitrary number of spikes per period,
as well as between periodic to non-periodic states.

The detailed observations of the PO-reaction dynamics
described in the present paper imply very time-consuming
experiments to be conducted in the laboratory which, however
are feasible in silico with high-performance computer clusters.
The results of such numerical experiments reported here are
truly surprising and difficult to explain mathematically due to
the total absence of a proper theoretical framework to antici-
pate the behaviour of nonlinear sets of differential equations.
As an additional byproduct, we mention that the detailed
predictions reported here for the dynamical behaviour of the
PO-reaction over extended ranges of the initial enzyme concen-
tration open now an objective means of validating experimen-
tally the underlying model and to find out whether or not
corrections may eventually be needed.
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